Stem Cells Commitment on Graphene-Based Scaffolds

  • Chapter
  • First Online:
Graphene-based Materials in Health and Environment

Abstract

In the last years, a rapid development in production, and functionalization of graphene give rise to several products that have shown great potentials in many fields, such as nanoelectronics, energy technology, sensors, and catalysis. In this context we should not forget the biomedical application of graphene that became a new area with outstanding potential. The first study on graphene for biomedical applications has been performed by Dai in 2008 that reported the use of graphene oxide as an efficient nanocarrier for drug delivery. This pioneristic study opened the doors for the use of graphene in widespread biomedical applications such as drug/gene delivery, biological sensing and imaging, antibacterial materials, but also as biocompatible scaffold for cell culture and tissue engineering. The application of graphene-based scaffolds for tissue engineering applications is confirmed by the many exciting and intriguing literature reports over the last few years, that clearly confirm that graphene and its related substrates are excellent platforms for adhesion, proliferation, and differentiation of various cells such as human Mesenchymal stem cells, human neuronal stem cells, and induced pluripotent stem cells. Since most of the papers on this fields are related to in vitro studies, several future in vivo investigations need to be conducted in order to lead to its utilization as implantable tissue engineering material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184

    Article  Google Scholar 

  2. Chandra P, Lee SJ (2015) Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomark Insights 10(Suppl 1):105–116

    Google Scholar 

  3. Martino MM, Brkic S, Bovo E, Burger M, Schaefer DJ, Wolff T, Gürke L, Briquez PS, Larsson HM, Gianni-Barrera R, Hubbell JA, Banfi A (2015) Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front Bioeng Biotechnol 3:45

    Article  Google Scholar 

  4. Knothe Tate ML, Detamore M, Capadona JR, Woolley A, Knothe U (2016) Engineering and commercialization of human-device interfaces, from bone to brain. Biomaterials 95:35–46

    Article  Google Scholar 

  5. Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM (2016) Biomaterials for hollow organ tissue engineering. Fibrogenesis Tissue Repair 9:3

    Article  Google Scholar 

  6. Bressan E, Ferroni L, Gardin C, Sbricoli L, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12(1):296

    Article  Google Scholar 

  7. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Özyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678

    Article  Google Scholar 

  8. Liu Z, Robinson JT, Sun XM et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  Google Scholar 

  9. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294

    Article  Google Scholar 

  10. Xuan Y, Wu YQ, Shen T et al (2008) Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl Phys Lett 92(1):013101–013103

    Article  Google Scholar 

  11. Hu S, Zeng Y, Yang S, Qin H, Cai H, Wang J (2015) Application of graphene based nanotechnology in stem cells research. J Nanosci Nanotechnol 15(9):6327–6341 (Review)

    Article  Google Scholar 

  12. Zavan B, Vindigni V, Gardin C, D’Avella D, Della Puppa A, Abatangelo G, Cortivo R (2010) Neural potential of adipose stem cells. Discov Med 10(50):37–43 (Review)

    Google Scholar 

  13. Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B (2013) Nanotechnology to drive stem cell commitment. Nanomedicine 8(3):469–486

    Article  Google Scholar 

  14. Hao J, Zhang Y, **g D, Shen Y, Tang G, Huang S, Zhao Z (2015) Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater 20:1–9

    Article  Google Scholar 

  15. Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16(3):239–253

    Article  Google Scholar 

  16. D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M (2015) Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 13:186

    Article  Google Scholar 

  17. Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge

    Google Scholar 

  18. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76 (Review)

    Article  Google Scholar 

  19. Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416

    Article  Google Scholar 

  20. González F, Huangfu D (2016) Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol 5(1):39–65

    Article  Google Scholar 

  21. Takahashi K, Yamanaka S (2015) A developmental framework for induced pluripotency. Development 142(19):3274–3285

    Article  Google Scholar 

  22. Raab S, Klingenstein M, Liebau S, Linta L (2014) A Comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391

    Article  Google Scholar 

  23. Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) PS cells: a game changer for future medicine. EMBO J 33(5):409–417

    Article  Google Scholar 

  24. Fulka J Jr, Fulka H (2007) Somatic cell nuclear transfer (SCNT) in mammals: the cytoplast and its reprogramming activities. Adv Exp Med Biol 591:93–102 (Review)

    Article  Google Scholar 

  25. Tweedell KS (2008) New paths to pluripotent stem cells. Curr Stem Cell Res Ther 3(3):151–162

    Article  Google Scholar 

  26. Wu M, Chen G, Hu B (2013) Induced pluripotency for translational research. Genom Proteom Bioinform 11(5):288–293

    Article  Google Scholar 

  27. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533

    Article  Google Scholar 

  28. Chari S, Mao S (2016) Timeline: iPSCs—the first decade. Cell 164(3):580

    Article  Google Scholar 

  29. Wan W, Cao L, Kalionis B, **a S, Tai X (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells Int 2015:382530

    Article  Google Scholar 

  30. Olariu V, Lövkvist C, Sneppen K (2016) Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 6:25438

    Article  Google Scholar 

  31. Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193

    Article  Google Scholar 

  32. Liu Z, Skamagki M, Kim K, Zhao R (2015) Canonical MICRORNA activity facilitates but may be dispensable for transcription factor-mediated reprogramming. Stem Cell Rep 5(6):1119–1127

    Article  Google Scholar 

  33. Porciuncula A, Kumar A, Rodriguez S, Atari M, Araña M, Martin F, Soria B, Prosper F, Verfaillie C, Barajas M (2016) Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells. Differentiation S0301–4681(16):30015–30019. doi:10.1016/j.diff.2016.04.005

    Google Scholar 

  34. Chanana AM, Rhee JW, Wu JC (2016) Human-induced pluripotent stem cell approaches to model inborn and acquired metabolic heart diseases. Curr Opin Cardiol 31(3):266–274

    Article  Google Scholar 

  35. El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y (2016) Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med 5(5):694–702

    Article  Google Scholar 

  36. Di Foggia V, Makwana P, Ali RR, Sowden JC (2016) Induced pluripotent stem cell therapies for degenerative disease of the outer retina: disease modeling and cell replacement. J Ocul Pharmacol Ther 32(5):240–252. doi:10.1089/jop.2015.0143. Epub 2016 Mar 30

    Google Scholar 

  37. Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, Muñoz Y, Ramos D, Villegas-Perez MP, Zapata MA, Raya A, Ruberte J, Veiga A, Garcia-Arumi J (2016) Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev 3:16010

    Article  Google Scholar 

  38. Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, El-Badri N, Ghoneim MA (2014) Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int 2014:832736

    Article  Google Scholar 

  39. Reinhard J, Brösicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol S1357–2725(16):30107–30108. doi: 10.1016/j.biocel.2016.05.002. [Epub ahead of print]

    Google Scholar 

  40. Belenguer G, Domingo-Muelas A, Ferrón SR, Morante-Redolat JM, Fariñas I (2016) Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation 91(4-5):28–41. doi:10.1016/j.diff.2016.01.005. Epub 2016 Mar 23

    Google Scholar 

  41. Zhao H, Chai Y (2015) Stem cells in teeth and craniofacial bones. J Dent Res 94(11):1495–1501

    Article  Google Scholar 

  42. Aly LA (2015) Stem cells: sources, and regenerative therapies in dental research and practice. World J Stem Cells 7(7):1047–1053

    Google Scholar 

  43. Padial-Molina M, O’Valle F, Lanis A, Mesa F, Dohan Ehrenfest DM, Wang HL, Galindo-Moreno P (2015) Clinical application of mesenchymal stem cells and novel supportive therapies for oral bone regeneration. Biomed Res Int 2015:341327

    Article  Google Scholar 

  44. Tatullo M, Marrelli M, Paduano F (2015) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12(1):72–77

    Article  Google Scholar 

  45. Liu Y, Hu J, Wang S (2014) Mesenchymal stem cell-mediated treatment of oral diseases. Histol Histopathol 29(8):1007–1015

    Google Scholar 

  46. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry–part II: clinical applications. J Prosthodont Res 56(4):229–248

    Article  Google Scholar 

  47. Dawsonand I, Oreffo ROC (2008) Bridging the regenerationgap:stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473(2):124–131

    Article  Google Scholar 

  48. Morikawa S, Ouchi T, Shibata S, Fujimura T, Kawana H, Okano H, Nakagawa T (2016) Applications of mesenchymal stem cells and neural crest cells in craniofacial skeletal research. Stem Cells Int 2016:2849879

    Article  Google Scholar 

  49. Fisher JN, Peretti GM, Scotti C (2016) Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int 2016:9352598

    Article  Google Scholar 

  50. Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016:6180487

    Article  Google Scholar 

  51. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  52. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  Google Scholar 

  53. Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:1–12

    Article  Google Scholar 

  54. Crowder SW, Prasai D, Rath R et al (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176

    Article  Google Scholar 

  55. Rosa V, Della Bona A, Cavalcanti BN, Nör JE (2012) Tissue engineering: from research to dental clinics. Dent Mater 28(4):341–348

    Article  Google Scholar 

  56. Qi WY, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2:5461–5467

    Article  Google Scholar 

  57. Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    Article  Google Scholar 

  58. Tang LAL, Lee WC, Shi H et al (2012) Highly wrinkled crosslinked graphene oxide membranes for biological and chargestorage applications. Small 8(3):423–431

    Article  Google Scholar 

  59. ** G, Li K (2014) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C Mater Biol Appl 45:671–681

    Article  Google Scholar 

  60. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25(2):168–186

    Article  Google Scholar 

  61. Li M, Liu Q, Jia Z et al (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197

    Article  Google Scholar 

  62. Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional softmaterials. Adv Mater 25(1):13–30

    Article  Google Scholar 

  63. Bernhard JC, Vunjak-Novakovic G (2016) Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7:56

    Article  Google Scholar 

  64. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  Google Scholar 

  65. Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97(4):514–535

    Article  Google Scholar 

  66. Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202

    Article  Google Scholar 

  67. Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS (2015) Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces 7(18):9598–9607

    Article  Google Scholar 

  68. Shi YY, Li M, Liu Q, Jia ZJ, Xu XC, Cheng Y, Zheng YF (2016) Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med 27(3):48

    Article  Google Scholar 

  69. Schroeder KL, Goreham RV, Nann T (2016) Graphene quantum dots for theranostics and bioimaging. Pharm Res 33(10):2337–2357. doi:10.1007/s11095-016-1937-x. Epub 2016 May 20

    Google Scholar 

  70. Hsiao YS, Kuo CW, Chen P (2013) Multifunctional graphene-PEDOT microelectrodes for on chip manipulation of human mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656

    Article  Google Scholar 

  71. Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D, Dhar M (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374

    Article  Google Scholar 

  72. Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q (2014) Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res, Part A 103(4):1424–1435

    Article  Google Scholar 

  73. Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252

    Article  Google Scholar 

  74. Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV (2015) Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 26(16):161001

    Article  Google Scholar 

  75. Lyu CQ, Lu JY, Cao CH, Luo D, Fu YX, He YS, Zou DR (2015) Induction of osteogenic differentiation of human adipose-derived stem cells by a novel self-supporting graphene hydrogel film and the possible underlying mechanism. ACS Appl Mater Interfaces 7(36):20245–20254

    Article  Google Scholar 

  76. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7(11):6331–6339

    Article  Google Scholar 

  77. Lee JH, Shin YC, ** OS, Kang SH, Hwang Y-S, Park J-C, Hong SW, Han DW (2015) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651

    Article  Google Scholar 

  78. Lee JH, Shin YC, Lee S-M, ** OS, Kang SH, Hong SW, Huh JB, Han D-W (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5(November):18833

    Article  Google Scholar 

  79. Raucci MR, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L (2016) Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.2119

    Google Scholar 

  80. Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51:69–79

    Article  Google Scholar 

  81. Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132

    Article  Google Scholar 

  82. Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22

    Article  Google Scholar 

  83. Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2012) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone Curr Opin Neurol 25(5):597–603. doi:10.1097/WCO.0b013e328357f288

    Google Scholar 

  84. Should Bernhard JC, Vunjak-Novakovic G (2016) We use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7(1):56. doi:10.1186/s13287-016-0314-3

  85. Nazempour A, Van Wie BJ (2016) Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng 44(5):1325–1354

    Article  Google Scholar 

  86. Panadero JA, Lanceros-Mendez S, Ribelles JL (2016) Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 33:1–12

    Article  Google Scholar 

  87. Lee WC, Lim CH, Su KC, Loh KP, Lim CT (2015) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969

    Article  Google Scholar 

  88. Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521

    Article  Google Scholar 

  89. Tedesco FS, Cossu G (2012) Stem cell therapies for muscle disorders. Curr Opin Neurol 25:597–603

    Article  Google Scholar 

  90. Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222

    Article  Google Scholar 

  91. Gentile NE, Stearns KM, Brown EH, Rubin JP, Boninger ML, Dearth CL, Ambrosio F, Badylak SF (2014) Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil 93(11 Suppl 3):S79–S87

    Article  Google Scholar 

  92. Cezara CA, Mooneya DJ (2015) Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 84:188–197

    Article  Google Scholar 

  93. Mertens JP, Sugg KB, Lee JD, Larkin LM (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9(1):89–100

    Article  Google Scholar 

  94. Duffy RM, Feinberg AW (2014) Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):178–195

    Article  Google Scholar 

  95. Sicari BM, Dearth CL, Badylak SF (2014) Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat Rec 297(1):51–64

    Article  Google Scholar 

  96. Davies BM, Morrey ME, Mouthuy PA, Baboldashti NZ, Hakimi O, Snelling S, Price A, Carr A (2013) Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med 8(5):613–630

    Article  Google Scholar 

  97. Zhao C, Andersen H, Ozyilmaz B, Ramaprabhu S, Pastorin G, Ho HK (2015) Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering. Nanoscale 7(43):18239–18249

    Article  Google Scholar 

  98. Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009

    Article  Google Scholar 

  99. Sedaghati T, Seifalian AM (2015) Nanotechnology and bio-functionalisation for peripheral nerve regeneration. Neural Regen Res 10(8):1191–1194. doi:10.4103/1673-5374.162678

    Article  Google Scholar 

  100. Matsumoto K, Ohnishi K, Sekine T, Ueda H, Yamamoto Y, Kiyotani T, Nakamura T, Endo K, Shimizu Y (2000) Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs. ASAIO J 46:415–420

    Article  Google Scholar 

  101. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  Google Scholar 

  102. Hood B, Levene HB, Levi AD (2009) Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 26:E4

    Article  Google Scholar 

  103. Tsintou M, Dalamagkas K, Seifalian AM (2015) Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 10:726–742

    Article  Google Scholar 

  104. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:89–115

    Google Scholar 

  105. Zavan B, Michelotto L, Lancerotto L, Della Puppa A, D’Avella D, Abatangelo G, Vindigni V, Cortivo R (2010) Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 32(1):47–54

    Article  Google Scholar 

  106. Gardin C, Piattelli A, Zavan B (2016) Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 34(6):435–437

    Article  Google Scholar 

  107. Gardin C, Vindigni V, Bressan E, Ferroni L, Nalesso E, Puppa AD, D’Avella D, Lops D, Pinton P, Zavan B (2011) Hyaluronan and fibrin biomaterial as scaffolds for neuronal differentiation of adult stem cells derived from adipose tissue and skin. Int J Mol Sci 12(10):6749–6764

    Article  Google Scholar 

  108. Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680

    Article  Google Scholar 

  109. Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4:1408–1416

    Article  Google Scholar 

  110. Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z (2016) Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8(4):1897–1904

    Article  Google Scholar 

  111. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258

    Article  Google Scholar 

  112. Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S, Abatangelo G (2003) In vitro reconstruction of human dermal equivalent enriched with endothelial cells. Biomaterials 24(7):1205–1211

    Article  Google Scholar 

  113. Papini R (2004) Management of burn injuries of various depths. Br Med J 329:158–160

    Article  Google Scholar 

  114. Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33:946–957

    Article  Google Scholar 

  115. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  Google Scholar 

  116. Santema TB, Poyck PP, Ubbink DT (2016) Skin grafting and tissue replacement for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2:CD011255

    Google Scholar 

  117. Mitsukawa N, Higaki K, Ito N, Muramatsu H, Karube D, Akita S, Kubota Y, Satoh K (2016) Combination treatment of artificial dermis and basic fibroblast growth factor for skin defects: a histopathological examination. Wounds 28(5):158–166

    Google Scholar 

  118. Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R (2005) In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J 19(11):1546–1548 Epub 2005 Jun 21

    Google Scholar 

  119. Garwood CS, Steinberg JS, Kim PJ (2015) Bioengineered alternative tissues in diabetic wound healing. Clin Podiatr Med Surg 32(1):121–133

    Article  Google Scholar 

  120. Figallo E, Flaibani M, Zavan B, Abatangelo G, Elvassore N (2007) Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog 23(1):210–216

    Article  Google Scholar 

  121. Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP (2015) Tissue-engineered skin substitutes. Plast Reconstr Surg 136(6):1379–1388

    Article  Google Scholar 

  122. Dąbrowska AK, Rotaru GM, Derler S, Spano F, Camenzind M, Annaheim S, Stämpfli R, Schmid M, Rossi RM (2016) Materials used to simulate physical properties of human skin. Skin Res Technol 22(1):3–14

    Article  Google Scholar 

  123. Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK (2015) Burn wound healing and treatment: review and advancements. Crit Care 12(19):243

    Article  Google Scholar 

  124. Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640

    Article  Google Scholar 

  125. Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212):941–945

    Article  Google Scholar 

  126. Li Z, Wang H, Yang B, Sun Y, Huo R (2015) Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng, C 57:181–188

    Article  Google Scholar 

  127. Farouz Y, Chen Y, Terzic A, Menasché P (2015) Concise review: growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation. Stem Cells 33(4):1021–1035

    Article  Google Scholar 

  128. Sun X, Altalhi W, Nunes SS (2016) Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev 96:183–194

    Article  Google Scholar 

  129. Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101

    Google Scholar 

  130. Huyer LD, Montgomery M, Zhao Y, **ao Y, Conant G, Korolj A, Radisic M (2015) Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 10(3):034004

    Article  Google Scholar 

  131. Lee T-J, Park S, Bhang SH, Yoon J-K, Jo I, Jeong G-J, Hong BH, Kim B-S (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Biophys Res Commun 452(1):174–180

    Article  Google Scholar 

  132. Ahmed M, Yildirimer L, Khademhosseini A, Seifalian AM (2012) Nanostructured materials for cardiovascular tissue engineering. J Nanosci Nanotechnol 12(6):4775–4785

    Article  Google Scholar 

  133. Martinelli V, Cellot G, Fabbro A, Bosi S, Mestroni L, Ballerini L (2013) Improving cardiac myocytes performance by carbon nanotubes platforms. Front Physiol 4:239

    Article  Google Scholar 

  134. Sreejit P, Verma RS (2013) Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev 9(2):158–171

    Article  Google Scholar 

  135. Zwi-Dantsis L, Gepstein L (2012) Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 69(19):3285–3299

    Article  Google Scholar 

  136. Kim T, Kahng YH, Lee T, Lee K, do Kim H (2013) Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells 36(6):577–582

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buggio, M. et al. (2016). Stem Cells Commitment on Graphene-Based Scaffolds. In: Gonçalves , G., Marques, P., Vila, M. (eds) Graphene-based Materials in Health and Environment. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-45639-3_4

Download citation

Publish with us

Policies and ethics

Navigation