Graphene Based Materials in Neural Tissue Regeneration

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 3

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1107))

Abstract

Due to its extraordinary features such as large surface area, high electrical conductivity, chemical stability and mechanical properties, graphene attracts great interest in various fields of biomedical sciences including biosensors, cancer therapy, diagnosis and regenerative medicine. The use of graphene-based materials has been of great interest for the design of scaffolds that can promote neural tissue regeneration. Recent studies published over the last few years clearly show that graphene and graphene based materials promote adhesion, proliferation and differentiation of various cells including embryonic stem cells (ESC), neural stem cells (NSC), mesenchymal stem cells (MSC) and induced pluripotent stem cells (iPSC). Therefore graphene based materials are one of the promising nanoplatforms in regenerative medicine for neural tissue injury. With its unique topographic and chemical properties, graphene is used as a scaffold that could provide a bridge between regenerating nerves. More importantly, as a conductive substrate, graphene allows the continuation of electrical conduction between damaged nerve ends. The integration of supportive cells such as glial, neural precursor or stem cells in such a scaffold shows higher regeneration when compared to currently used neural autografts and nerve conduits. This review discusses the details of such studies involving graphene based materials with a special interest on neural stem cells, mesenchymal stem cells or pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two dimentional

3D:

Three dimentional

1 step-G:

One-step growth

2 step-G:

Two-step growth

BDNF:

Brain-derived neurotrophic factor

b-FGF:

Basic fibroblast growth factor

CNS:

Central nervous system

Cu:

Copper

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

ELF-EMF:

Extremely low frequency electromagnetic fields

ESCs:

Embryonic stem cells

FGF-2:

Fibroblast growth factor 2

G:

Graphene

GO:

Graphene oxide

hADMSCs:

Human adipose-derived mesenchymal stem cells

hMSCs:

Human mesenchymal stem cells

hNPCs:

Human neural progenitor cells

hNSCs:

Human neural stem cells

IFNγ:

Interferon-γ

iPSCs:

Induced pluripotent stem cells

LIF:

Leukemia inhibitory factor

LPS:

Lipopolysaccharide

MSCs:

Mesenchymal stem cells

NGLC:

Nanocrystalline glass-like carbon film

NGF:

Nerve growth factor

NGO:

Nanosized graphene oxide

NPCs:

Neural progenitor cells

NSCs:

Neural stem cells

PADM:

Porcine acellular dermal matrix

PCL:

Polycaprolactone

PDGF:

Platelet-derived growth factor

PDMS:

Polydimethylsiloxane

PEDOT:

Poly (3,4-ethylenedioxythiophene)

PEG:

Poly (ethylene glycol)

PN:

Peripheral nerve

PNI:

Peripheral nerve injury

PNS:

Peripheral nervous system

PU:

Polyurethane

rGO:

Reduced graphene oxide

SCI:

Spinal cord injury

SCs:

Schwann cells

SDIA:

Stromal cell-derived inducing activity

siNPs:

Silica nanoparticles

TBI:

Traumatic brain injury

TCPS:

Tissue culture polystyrene

TiO2 :

Titanium dioxide

References

  • Akhavan O, Ghaderi E (2013) Flash photo stimulation of human neural stem cells on graphene/TiO 2 heterojunction for differentiation into neurons. Nanoscale 5:10316–10326

    Article  CAS  PubMed  Google Scholar 

  • Ali-Boucetta H, Bitounis D, Raveendran-Nair R, Servant A, Van den Bossche J, Kostarelos K (2013) Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater 2:433–441

    Article  CAS  PubMed  Google Scholar 

  • Amoh Y, Li L, Campillo R, Kawahara K, Katsuoka K, Penman S, Hoffman RM (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc Natl Acad Sci U S A 102:17734–17738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnabé-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Cell Stem Cell 3:16–24

    Article  PubMed  Google Scholar 

  • Bitounis D, Ali-Boucetta H, Hong BH, Min DH, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Mater 25:2258–2268

    Article  CAS  PubMed  Google Scholar 

  • Bressan E, Ferroni L, Gardin C, Sbricoli L, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12:296

    Article  PubMed  PubMed Central  Google Scholar 

  • Bussy C, Ali-Boucetta H, Kostarelos K (2013) Safety considerations for graphene: lessons learnt from carbon nanotubes. Acc Chem Res 46:692–701

    Article  CAS  PubMed  Google Scholar 

  • Chang K-A, Kim JW, a Kim J, Lee S, Kim S, Suh WH, Kim H-S, Kwon S, Kim SJ, Suh Y-H (2011) Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One 6:e18738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-Y, Pang D-P, Hwang S-M, Tuan H-Y, Hu Y-C (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427

    Article  PubMed  Google Scholar 

  • Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424

    Article  CAS  PubMed  Google Scholar 

  • Chin MH, Mason MJ, **e W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lázaro I, Yilmazer A, Kostarelos K (2014) Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release 185:37–44

    Article  PubMed  Google Scholar 

  • del Río-Hortega P (1921) Estudios sobre la neurogia. La glia de escasas rediaciones (oligodendroglia). Bol Real Soc Esp Hist Nat 21:63–92

    Google Scholar 

  • del Río-Hortega P (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglıá. Mem Real Soc Esp Hist Nat 14:5–122

    Google Scholar 

  • Ding X, Liu H, Fan Y (2015) Graphene-based materials in regenerative medicine. Adv Healthc Mater 4:1451–1468

    Article  CAS  PubMed  Google Scholar 

  • Fraczek-Szczypta A (2014) Carbon nanomaterials for nerve tissue stimulation and regeneration. Mater Sci Eng C 34:35–49

    Article  CAS  Google Scholar 

  • Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18:397–405

    Article  CAS  PubMed  Google Scholar 

  • Gardin C, Piattelli A, Zavan B (2016) Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 34:435–437

    Article  CAS  PubMed  Google Scholar 

  • Geim AK (2011) Nobel lecture: random walk to graphene. Rev Mod Phys 83:851

    Article  CAS  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17

    Article  CAS  PubMed  Google Scholar 

  • Gomillion CT, Burg KJ (2006) Stem cells and adipose tissue engineering. Biomaterials 27:6052–6063

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Qiu J, Liu J, Liu H (2017) Graphene microfiber as a scaffold for regulation of neural stem cells differentiation. Sci Rep 7:5678

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z (2016a) Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8:1897–1904

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhang X, Yu X, Wang S, Qiu J, Tang W, Li L, Liu H, Wang ZL (2016b) Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–poly (3, 4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10:5086–5095

    Article  CAS  PubMed  Google Scholar 

  • Huang C-T, Shrestha LK, Ariga K, Hsu S-h (2017) A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells. J Mater Chem B 5:8854–8864

    Article  CAS  PubMed  Google Scholar 

  • Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9:4636–4648

    Article  CAS  PubMed  Google Scholar 

  • Kenry LWC, Loh KP, Lim CT (2018) When stem cells meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155:236–250. https://doi.org/10.1016/j.biomaterials.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park S, Kim YJ, Jeon CS, Lim KT, Seonwoo H, Cho S-P, Chung TD, Choung P-H, Choung Y-H (2015a) Monolayer graphene-directed growth and neuronal differentiation of mesenchymal stem cells. J Biomed Nanotechnol 11:2024–2033

    Article  CAS  PubMed  Google Scholar 

  • Kim T-H, Shah S, Yang L, Yin PT, Hossain MK, Conley B, Choi J-W, Lee K-B (2015b) Controlling differentiation of adipose-derived stem cells using combinatorial graphene hybrid-pattern arrays. ACS Nano 9:3780–3790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Kubli CA, Lu P (2015) Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury. Neural Regen Res 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee WC, Lim CHY, Shi H, Tang LA, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334–7341

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-J, Jang W, Im H, Sung J-S (2015) Extremely low frequency electromagnetic fields enhance neuronal differentiation of human mesenchymal stem cells on graphene-based substrates. Curr Appl Phys 15:S95–S102

    Article  Google Scholar 

  • Lee YJ, Seo TH, Lee S, Jang W, Kim MJ, Sung JS (2018) Neuronal differentiation of human mesenchymal stem cells in response to the domain size of graphene substrates. J Biomed Mater Res A 106:43–51

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G (2013) Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3:1604

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW (2000) Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci 97:6126–6131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Dolado E, González-Mayorga A, Portolés MT, Feito MJ, Ferrer ML, del Monte F, Gutiérrez MC, Serrano MC (2015) Subacute tissue response to 3D graphene oxide scaffolds implanted in the injured rat spinal cord. Adv Healthc Mater 4:1861–1868

    Article  PubMed  Google Scholar 

  • Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee P-LR, Ahn J-H, Hong BH, Pastorin G (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678

    Article  CAS  PubMed  Google Scholar 

  • Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AT, Mattiassi S, Loeblein M, Chin E, Ma D, Coquet P, Viasnoff V, Teo EHT, Goh EL, Yim EK (2018) Human Rett-derived neuronal progenitor cells in 3D graphene scaffold as an in vitro platform to study the effect of electrical stimulation on neuronal differentiation. Biomed Mater 13:034111

    Article  PubMed  Google Scholar 

  • Novoselov KS (2011) Graphene: materials in the flatland (Nobel Lecture). Angew Chem Int Ed 50:6986–7002

    Article  CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  • Okan BS, Marset A, Seyyed Monfared Zanjani J, Sut PA, Sen O, Çulha M, Menceloglu Y (2016) Thermally exfoliated graphene oxide reinforced fluorinated pentablock poly (l-lactide-co-ε-caprolactone) electrospun scaffolds: insight into antimicrobial activity and biodegradation. J Appl Polym Sci 133(22):43490

    Google Scholar 

  • Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon JK, Park YH, Cho SP, Lee S, Hong BH (2014) Graphene–regulated Cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3:176–181

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23:H263

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Jarquín UN, Lazo-Gomez R, Tovar-y-Romo LB, Tapia R (2014) Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology 82:101–107

    Article  PubMed  Google Scholar 

  • Reina G, Tamburri E, Orlanducci S, Gay S, Matassa R, Guglielmotti V, Lavecchia T, Letizia Terranova M, Rossi M (2014) Nanocarbon surfaces for biomedicine. Biomatter 4:e28537

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Losada N, Romero P, Estivill-Torrús G, de Villoria RG, Aguirre JA (2017) Cell survival and differentiation with nanocrystalline glass-like carbon using substantia nigra dopaminergic cells derived from transgenic mouse embryos. PLoS One 12:e0173978

    Article  PubMed  PubMed Central  Google Scholar 

  • Salewski RP, Eftekharpour E, Fehlings MG (2010) Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury. J Cell Physiol 222:515–521

    CAS  PubMed  Google Scholar 

  • Saner B, Okyay F, Yürüm Y (2010) Utilization of multiple graphene layers in fuel cells. 1. An improved technique for the exfoliation of graphene-based nanosheets from graphite. Fuel 89:1903–1910

    Article  CAS  Google Scholar 

  • Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10:1361

    Article  CAS  PubMed  Google Scholar 

  • Schroeder GD, Kepler CK, Vaccaro AR (2016) The use of cell transplantation in spinal cord injuries. J Am Acad Orthop Surg 24:266–275

    Article  PubMed  Google Scholar 

  • Seabra AB, Paula AJ, de Lima R, Alves OL, Duran N (2014) Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 27:159–168

    Article  CAS  PubMed  Google Scholar 

  • Sedaghati T, Yang SY, Mosahebi A, Alavijeh MS, Seifalian AM (2011) Nerve regeneration with aid of nanotechnology and cellular engineering. Biotechnol Appl Biochem 58:288–300

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Patiño J, García-Rama C, Ferrer M, Fierro J, Tamayo A, Collazos-Castro J, Del Monte F, Gutierrez M (2014) 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. J Mater Chem B 2:5698–5706

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Solanki A, Lee KB (2016) Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res 49:17–26. https://doi.org/10.1021/acs.accounts.5b00345

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26:3673–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SR, Li YC, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274. https://doi.org/10.1016/j.addr.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva GA (2006) Neuroscience nanotechnology: progress, opportunities and challenges. Nat Rev Neurosci 7:65

    Article  CAS  PubMed  Google Scholar 

  • Slonczewski J, Weiss P (1958) Band structure of graphite. Phys Rev 109:272

    Article  CAS  Google Scholar 

  • Solanki A, Chueng STD, Yin PT, Kappera R, Chhowalla M, Lee KB (2013) Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 25:5477–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Jiang Z, Li N, Liu P, Liu L, Tang M, Cheng G (2014) Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials 35:6930–6940

    Article  CAS  PubMed  Google Scholar 

  • Spassky N, Merkle FT, Flames N, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Subbarao RB, Rho GJ (2015) Human mesenchymal stem cells-current trends and future prospective. Biosci Rep 35:e00191

    Article  PubMed  PubMed Central  Google Scholar 

  • Venables J, Spiller G, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399

    Article  Google Scholar 

  • Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24:4285–4290

    Article  CAS  PubMed  Google Scholar 

  • Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4:1408–1416

    Article  CAS  PubMed  Google Scholar 

  • Wyndaele M, Wyndaele J-J (2006) Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44:523

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Li T, Xu M, Gao F, Yang J, Yang Z, Le W (2014) Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine 9:2445–2455

    Article  CAS  PubMed  Google Scholar 

  • Barkho BZ, Zhao X (2011) Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 6:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Nisbet D, Thouas G, Bernard C, Forsythe J (2010) Bio-nanotechnology approaches to neural tissue engineering. In: Tissue engineering. InTech, Rijeka

    Google Scholar 

Download references

Acknowledgement

AY, HT and CG acknowledge support by the Scientific and Technological Research Council of Turkey and FlagEra Graphene Project G-IMMUNOMICS (TUBITAK, grant number 315S202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Açelya Yilmazer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aydin, T., Gurcan, C., Taheri, H., Yilmazer, A. (2018). Graphene Based Materials in Neural Tissue Regeneration. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 3. Advances in Experimental Medicine and Biology(), vol 1107. Springer, Cham. https://doi.org/10.1007/5584_2018_221

Download citation

Publish with us

Policies and ethics

Navigation