Therapeutic Approaches to Histone Reprogramming in Retinal Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Recent data have revealed epigenetic derangements and subsequent chromatin remodeling as a potent biologic switch for chronic inflammation and cell survival which are important therapeutic targets in the pathogenesis of several retinal degenerations. Histone deacetylases (HDACs) are a major component of this system and serve as a unique control of the chromatin remodeling process. With a multitude of targeted HDAC inhibitors now available, their use in both basic science and clinical studies has widened substantially. In the field of ocular biology, there are data to suggest that HDAC inhibition may suppress neovascularization and may be a possible treatment for retinitis pigmentosa and dry age-related macular degeneration (AMD). However, the effects of these inhibitors on cell survival and chemokine expression in the chorioretinal tissues remain very unclear. Here, we review the multifaceted biology of HDAC activity and pharmacologic inhibition while offering further insight into the importance of this epigenetic pathway in retinal degenerations. Our laboratory investigations aim to open translational avenues to advance dry AMD therapeutics while exploring the role of acetylation on inflammatory gene expression in the aging and degenerating retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alsarraf O, Fan J, Dahrouj M et al (2014) Acetylation: A lysine modification with neuroprotective effects in ischemic retinal degeneration. Exp Eye Res 127C:124–131

    Article  Google Scholar 

  • Balaiya S, Khetpal V, Chalam KV (2012) Hypoxia initiates sirtuin1-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2alpha. Mol Vis 18:114–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bantscheff M, Hopf C, Savitski MM et al (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265

    Article  CAS  PubMed  Google Scholar 

  • Berner A, Mohan K, Lou D-Y et al (2014) RPE Cytotoxicity and Caspase Activation after Treatment with Valproic Acid. ARVO Meeting Abstracts 55:5991

    Google Scholar 

  • Bhalla S, Joshi D, Bhullar S et al (2013) Long-term follow-up for efficacy and safety of treatment of retinitis pigmentosa with valproic acid. Br J Ophthalmol 97:895–899

    Article  PubMed  Google Scholar 

  • Biermann J, Grieshaber P, Goebel U et al (2010) Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Investigative ophthalmology & visual science 51:526–534

    Google Scholar 

  • Clemson CM, Tzekov R, Krebs M et al (2011) Therapeutic potential of valproic acid for retinitis pigmentosa. Br J Ophthalmol 95:89–93

    Article  CAS  PubMed  Google Scholar 

  • de Ruijter AJ, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Marcotullio L, Canettieri G, Infante P et al (2011) Protected from the inside: endogenous histone deacetylase inhibitors and the road to cancer. Biochim Biophys Acta 1815:241–252

    CAS  PubMed  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  CAS  PubMed  Google Scholar 

  • Ferrante RJ, Kubilus JK, Lee J et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. The Journal of neuroscience: the official journal of the Society for Neuroscience 23:9418–9427

    CAS  Google Scholar 

  • Gao L, Cueto MA, Asselbergs F et al (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. The Journal of biological chemistry 277:25748–25755

    Article  CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X et al (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    Article  CAS  PubMed  Google Scholar 

  • Guzman E, Despande M, Byrd DW et al (2014) Systemic Valproic Acid can Accelerate Photoreceptor Loss in rd10 mice. Invest Ophthalmol Vis Sci 55:1281-

    Article  Google Scholar 

  • Imai SI, Guarente L (2014) NAD and sirtuins in aging and disease. Trends in cell biology 24:464–471

    Google Scholar 

  • Iraha S, Hirami Y, Oota S et al (2014) The efficacy of valproic acid for retinitis pigmentosa patients. ARVO Meeting Abstracts 55:1390

    Google Scholar 

  • Kim HJ, Chuang DM (2014) HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am J Transl Res 6:206–223

    PubMed  PubMed Central  Google Scholar 

  • Kleinman M, Berner A, Lou D et al (2013) Epigenetic Regulation of Eotaxin Expression in Human Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 54:344-

    Google Scholar 

  • Kleinman ME, Berner A, Mohan K et al (2014) Histone Deacetylase Expression and Inhibition in Age Related Macular Degeneration. ARVO Meeting Abstracts 55:3457

    Google Scholar 

  • Kumar A, Kothary PC, Rossi B et al (2014) Valproic Acid Induced Inhibition of Fibroblast Growth Factor 2 Synthesis in Human Retinal Pigment Epithelial Cells. Invest Ophthalmol Vis Sci 55:364-

    Google Scholar 

  • Lai RYJ, Zong Z, Tam BM et al (2014) Opposing effects of valproic acid treatment in four animal models of retinitis pigmentosa. ARVO Meeting Abstracts 55:4370

    Google Scholar 

  • Li N, Zhao D, Kirschbaum M et al (2008) HDAC inhibitor reduces cytokine storm and facilitates induction of chimerism that reverses lupus in anti-CD3 conditioning regimen. Proc Natl Acad Sci U S A 105:4796–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XS, Chopp M, Kassis H et al (2012) Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 220:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mader AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • McConkey DJ, White M, Yan W (2012) HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv Cancer Res 116:131–163

    Article  CAS  PubMed  Google Scholar 

  • Miao H, Tao Y, Li XX (2012) Inflammatory cytokines in aqueous humor of patients with choroidal neovascularization. Mol Vis 18:574–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitton KP, Guzman EE, Byrd D et al (2012) Rescue Of Photoreceptor Degeneration In Rd1 Mice By Systemic Treatment With Valproic Acid. Invest Ophthalmol Vis Sci 53:5585-

    Article  Google Scholar 

  • Murphy SP, Lee RJ, McClean ME et al (2014) MS-275, a class I histone deacetylase inhibitor, protects the p53-deficient mouse against ischemic injury. J Neurochem 129:509–515

    Article  CAS  PubMed  Google Scholar 

  • Peserico A, Simone C (2011) Physical and functional HAT/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol 2011:371832

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren M, Leng Y, Jeong M et al (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Pelluz J, Alavi MV, Sahaboglu A et al (2010) Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death Dis 1:e24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakespear MR, Halili MA, Irvine KM et al (2011) Histone deacetylases as regulators of inflammation and immunity. Trends Immunol 32:335–343

    Article  CAS  PubMed  Google Scholar 

  • Sisk RA (2012) Valproic acid treatment may be harmful in non-dominant forms of retinitis pigmentosa. Br J Ophthalmol 96:1154–1155

    Article  PubMed  Google Scholar 

  • Suuronen T, Nuutinen T, Ryhanen T et al (2007) Epigenetic regulation of clusterin/apolipoprotein J expression in retinal pigment epithelial cells. Biochem Biophys Res Commun 357:397–401

    Article  CAS  PubMed  Google Scholar 

  • Tsolmongyn B, Koide N, Odkhuu E et al (2013) Lipopolysaccharide prevents valproic acid-induced apoptosis via activation of nuclear factor-kappaB and inhibition of p53 activation. Cellular immunology 282:100–105

    Article  CAS  PubMed  Google Scholar 

  • van Schooneveld MJ, van den Born LI, van Genderen M et al (2011) The conclusions of Clemson et al concerning valproic acid are premature. Br J Ophthalmol 95:153:153–154 (author reply)

    Article  PubMed  Google Scholar 

  • Whitcup SM, Sodhi A, Atkinson JP et al (2013) The role of the immune response in age-related macular degeneration. Int J Inflam 2013:348092

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

M.E.K. was supported by NEI/NIH, Career Development Awards from the Foundation Fighting Blindness and Research to Prevent Blindness, and the American Federation for Aging Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre K. Berner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Berner, A., Kleinman, M. (2016). Therapeutic Approaches to Histone Reprogramming in Retinal Degeneration. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_6

Download citation

Publish with us

Policies and ethics

Navigation