Finite Element Analysis of Transcatheter Aortic Valve Implantation in the Presence of Aortic Leaflet Calcifications

  • Chapter
  • First Online:
Biomedical Technology

Abstract

Transcatheter Aortic Valve (TAV) implantation is a recent interventional procedure for the replacement of the aortic valve in patients affected by severe aortic stenosis who are considered at high or prohibitive surgical risk. Despite recent improvements, TAV-related complications still limit its application. In the present work, FE analyses of TAV implantation and function have been performed with the aim of investigating the influence of the calcifications of the aortic valve leaflets on TAV performances. Results suggest that the degree and location of calcifications could influence post-implanted TAV configuration as well as TAV-aortic root interactions and TAV dynamics. The study gives insights in the biomechanics of TAV, while the implemented computational tools could be applied to different scenarios to investigate other relevant clinical aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cribier, A., Eltchaninoff, H., Bash, A., Borenstein, N., Tron, C., Bauer, F., Derumeaux, G., Anselme, F., Laborde, F., Leon, M.B.: Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis. Circulation 106, 3006–3008 (2002)

    Google Scholar 

  2. Rodés-Cabau, J.: Transcatheter aortic valve implantation: current and future approaches. Nat. Rev. (Cardiology) 9, 15–29 (2011)

    Article  Google Scholar 

  3. Svensson, L.G., Tuzcu, M., Kapadia, S., Blackstone, E.H., Roselli, E.E., Gillinov, A.M., Sabik, J.F.I., Lytle, B.W.: A comprehensive review of the PARTNER trial. J. Thorac. Cardiovasc. Surg. 145(3), S11–S16 (2013)

    Article  Google Scholar 

  4. Rosengart, T.K., Feldman, T., Borger, M.A., Vassiliades, T.A., Gillinov, A.M., Hoercher, K.J., Vahanian, A., Bonow, R.O., O’Neill, W.: Percutaneous and minimally invasive valve procedures. A scientific statement from th American Heart Association. Circulation 117(13), 1750–1767 (2008)

    Article  Google Scholar 

  5. Vahanian, A., Himberta, D., Brochet, E., Depoix, J., Iung, B., Nataf, P.: Transcatheter aortic valve implantation. Arch. Cardiovasc. Dis. 105, 181–186 (2012)

    Article  Google Scholar 

  6. Fann, J.I., Chronos, N., Rowe, S.J., Michiels, R., Lyons, B.E., Leon, M.B., Kaplan, A.V.: Evolving strategies for the treatment of valvular heart disease: preclinical and clinical pathways for percutaneous aortic valve replacement. Catheter. Cardiovasc. Interv. 71, 434–440 (2008)

    Article  Google Scholar 

  7. Webb, J.G., Wood, D.A.: Current status of transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 60(6), 483–492 (2012)

    Article  Google Scholar 

  8. Ewe, S.H., Ng, A.C., Schuijf, J.d, van der Kley, F., Colli, A., Palmen, M., de Weger, A., Marsan, N.A., Bax, J.J., Delgado, V.: Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation. Am. J. Cardiol. 108, 1470–1477 (2011)

    Article  Google Scholar 

  9. Haensig, M., Lehmkuhl, L., Rastan, A.J., Kempfert, J., Mukherjee, C., Gutberlet, M., Holzhey, D.M., Mohr, F.W.: Aortic valve calcium scoring is a predictor of significant paravalvular aortic insufficiency in transapical-aortic valve implantation. Eur. J. Cardio-Thorac. Surg. 41, 1234–1241 (2012)

    Article  Google Scholar 

  10. Bleiziffer, S., Ruge, H., Horer, J., Hutter, A., Geisbüsch, S., Brockmann, G., Mazzitelli, D., Bauernschmitt, R., Lange, R.: Predictors for new-onset heart block after transcatheter aortic valve implantation. J. Am. Coll. Cardiol. Cardiovasc. Interv. 3(5), 524–530 (2010)

    Article  Google Scholar 

  11. Schievano, S., Taylor, A., Capelli, C., Lurz, P., Nordmeyer, J., Migliavacca, F., Bonhoeffer, P.: Patient specific finite element analysis results in more accurate prediction of stent fractures. J. Biomech. 43, 687–693 (2010)

    Google Scholar 

  12. Capelli, C., Taylor, A.M., Migliavacca, F., Bonhoeffer, P., Schievano, S.: Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos. Trans. R. Soc. 368, 3027–3038 (2010)

    Google Scholar 

  13. Capelli, C., Bosi, G.M., Cerri, E., Nordmeyer, J., Odenwald, T., Bonhoeffer, P., Migliavacca, F., Taylor, A.M., Schievano, S.: Patient-specific simulation of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50(2), 183–192 (2012)

    Article  Google Scholar 

  14. Wang, Q., Sirois, E., Sun, W.: Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J. Biomech. 45(11), 1965–1971 (2012)

    Google Scholar 

  15. Auricchio, F., Conti, M., Morganti, S., Reali, A.: Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Computer Methods in Biomechanics and Biomedicals Engineering. 17(12), 1347–1357 (2014)

    Google Scholar 

  16. Sturla, F., Votta, E., Stevanella, M., Conti, C.A., Redaelli, A.: Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Med. Eng. Phys. 35(12), 1721–1730 (2013)

    Article  Google Scholar 

  17. Hallquist, J.O.: LS-DYNA Theoretical Manual. Livermore Software Technology Corporation, California (2000)

    Google Scholar 

  18. Conti, C.A., Votta, E., Della Corte, A., Del Viscovo, L., Bancone, C., Cotrufo, M., Redaelli, A.: Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32, 212–221 (2010)

    Article  Google Scholar 

  19. Billiar, K.L., Sacks, M.S.: Biaxial and mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—Part I: experimental results. J. Biomech. Eng. 122, 23–30 (2000)

    Article  Google Scholar 

  20. Thubrikar, M.J., Aouad, J., Nolan, S.P.: Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valve and their relation to mechanical stress. Valv. Heart Dis. 58, 304–308 (1986)

    Google Scholar 

  21. Loree, H.M., Grodzinsky, A.J., Park, S.Y., Gibson, L.J., Lee, R.T.: Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27(2), 195–204 (1994)

    Article  Google Scholar 

  22. Tzamtzis, S., Viquerat, J., Yap, J., Mullen, M.J., Burriesci, G.: Numerical analysis of the radial force produced by the Medtronic-CoreValve and Edwards-SAPIEN after transcatheter aortic valve implantation (TAVI). Med. Eng. Phys. 35(1), 125–130 (2013)

    Article  Google Scholar 

  23. Razzolini, R., Longhi, S., Tarantini, G., Rizzo, S., Napodano, M., Abate, E., Fraccaro, C., Thiene, G., Iliceto, S., Gerosa, G., Basso, C.: Relation of aortic valve weight to severity of aortic stenosis. Am. J. Cardiol. 107(5), 741–746 (2011)

    Article  Google Scholar 

  24. Dweck, M.R., Boon, N.A., Newby, D.E.: Calcific aortic stenosis. A disease of the valve and the myocardium. J. Am. Coll. Cardiol. 60(19), 1854–1863 (2012)

    Article  Google Scholar 

  25. Willson, A.B., Webb, J.G., Gurvitch, R., Wood, D.A., Toggweiler, S., Binder, R., Freeman, M., Madden, M., Hague, C., Leipsic, J.: Structural integrity of balloon-expandable stents after transcatheter aortic valve implantation. JACC: Cardiovasc. Interv. 5(5), 525–532 (2012)

    Article  Google Scholar 

  26. Delgado, V., Ng, A.C., van de Veire, N.R., van der Kley, F., Schuijf, J.D., Tops, L.F., de Weger, A., Tavilla, G., de Rood, A., Kroft, L.J., Schalij, M.J., Bax, J.J.: Transcatheter aortic valve implantation: role of multidetector row computer tomography to evaluate prosthesis positioning and deployment in relation to valve function. Eur. Heart J. 31, 1114–1123 (2010)

    Article  Google Scholar 

  27. Al-Lamée, R., Godino, C., Colombo, A.: Transcatheter aortic valve implantation. Current principles of patient and technique selection and future perspectives. Circ. Cardiovasc. Interv. 4, 385–387 (2011)

    Article  Google Scholar 

  28. Zegdi, R., Ciobotaru, V., Noghin, M., Sleilaty, G., Lafont, A., Latrémouille, C., Deloche, A., Fabiani, J.: Is it reasonable to treat all calcified stenotic aortic valves with a valved stent? J. Am. Coll. Cardiol. 51(5), 579–584 (2008)

    Google Scholar 

  29. Piazza, N., de Jaegere, P., Schultz, C., Becker, A., Serruys, P., Anderson, R.: Anatomhy of the aortic valvar complex and its implications of transcatheter implantation of the aortic valve. Catheter. Cardiovasc. Interv. 1, 74–81 (2008)

    Article  Google Scholar 

  30. Léon, M.B., Piazza, N., Nikolski, E., Blackstone, E.H., Cutlip, D.E., Kappetein, A.P., Krucoff, M.W., Mack, M., Mehran, R., Miller, C., Morel, M., Petersen, J., Popma, J.J., Takkemberg, J.M., Vahanian, A., van Es, G., Vranckx, P., Webb, J.G., Windecker, S., Serruys, P.W.: Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials. J. Am. Coll. Cardiol. 57(3), 253–269 (2011)

    Article  Google Scholar 

  31. Gervaso, F., Capelli, C., Petrini, L., Lattanzio, S., Di Virgilio, L., Migliavacca, F.: On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41, 1206–1212 (2008)

    Article  Google Scholar 

  32. Pontone, G., Andreini, D., Bartorelli, A.L., Bertella, E., Cortinovis, S., Mushtaq, S., Annoni, A., Formenti, A., Baggiano, A., Conte, E., Tamborini, G., Muratori, M., Gripari, P., Bovis, F., Veglia, F., Foti, C., Alamanni, F., Ballerini, G., Fiorentini, C., Pepi, M.: Aortic annulus area assessment by multidetector computed tomography for predicting paravalvular regurgitation in patients undergoing balloon-expandable transcatheter aortic valve implantation: a comparison with TTE and TEE. Am. Heart J. 164(4), 576–584 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Dimasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dimasi, A., Stevanella, M., Votta, E., Sturla, F., Burriesci, G., Redaelli, A. (2015). Finite Element Analysis of Transcatheter Aortic Valve Implantation in the Presence of Aortic Leaflet Calcifications. In: Lenarz, T., Wriggers, P. (eds) Biomedical Technology. Lecture Notes in Applied and Computational Mechanics, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10981-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10981-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10980-0

  • Online ISBN: 978-3-319-10981-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation