On The Effects Of Non-planar Geometry for Blind Thrust Faults on Strong Ground Motion

  • Chapter
Computational Earthquake Science Part II

Part of the book series: PAGEOPH Topical Volumes ((PTV))

  • 258 Accesses

Abstract

We quantify the effects of complex fault geometry on low-frequency (< 1 Hz) strong ground motion using numerical modeling of dynamic rupture. Our tests include the computation of synthetic seismograms for several simple rupture scenarios with planar and curved fault approximations of the 1994 Northridge earthquake. We use the boundary integral equation method (BIEM) to compute the dynamic rupture process, which includes the normal stress effects along the curved fault geometries. The wave propagation and computation of synthetic seismograms are modeled using a fourth-order finite-difference method (FDM). The near-field ground motion is significantly affected by the acceleration, deceleration and arrest of rupture due to the curvature of the faults, as well as the variation in directivity of the rupture. For example, a 6-km-long hanging-wall or footwall splay with a maximum offset of 1 km can change 1-Hz peak velocities by up to a factor of 2-3 near the fault. Our tests suggest that the differences in waveform are larger on the hanging wall compared to those on the footwall, although the differences in amplitude are larger in the forward rupture direction (footwall). The results imply that kinematic ground motion estimates may be biased by the omission of dynamic rupture effects and even relatively gentle variation in fault geometry, and even for long-period waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aagaard, B. T., Heaton, T. H., and Hall, J. F. (2001) Dynamic Earthquake Rupture in the Presence of Lithostatic Normal Stress: Implication for Friction Models and Heat Production, Bull. Seismoc. Soc. Am. 91, 1763–1796.

    Google Scholar 

  • Aochi, H., Fukuyama E., and Matsu’ura, M. (2000a), Spontaneous Rupture Propagation on a Non-planar Fault in 3-D Elastic Medium, 157, 2003–2027.

    Google Scholar 

  • Aocxi, H., Fukuyama, E., and Matsu’ura, M. (2000b) Selectivity of Spontaneous Rupture Propagation on a Branched Fault, Geophys. Res. Lett. 27, 3635–3638.

    Google Scholar 

  • Aochi, H. and Madariaga, R. (2003) The 1999 Izmit, Turkey, Earthquake: Non-planar Fault Structure, Dynamic Rupture Process and Strong Ground Motion, Bull. Seismoc. Soc. Am. 93, 1249–1266.

    Article  Google Scholar 

  • Aochi, H., Madariaga, R., and Fukuyama E. (2002) Effect of Normal Stress during Rupture Propagation Along Non planar Fault, J. Geophys. Res. 107(B2), ESE 4, 1–12.

    Google Scholar 

  • Carena, S. and Suppe, J. (2002) 3-D Imaging of Active Structures Using Earthquake Aftershocks: The Northridge Thrust, California, J. Structural Geology 24, 887–904, 2002.

    Article  Google Scholar 

  • Collino, F. and Tsogxa, C. (2001) Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropie Heterogeneous Media, Geophysics 66, 294–307.

    Article  Google Scholar 

  • Gottsciämmer, E. and Olsen, K. B. (2001a) Accuracy of the Explicit Planar Free-surface Boundary Condition Implemented in a Fourth-order Staggered-grid Velocity-stress Finite-difference Scheme, Bull. Seismoc. Soc. Am. 91, 617–623.

    Article  Google Scholar 

  • Gottsciämmer, E. and Olsen, K. B. (2001b) Ground Motion Syntheticsfor Spontaneous versus Prescribed Rupture on a 45 Thrust Fault, EOS Trans, AGU, 82(47), Fall Meet. Suppl. Abstract S42C-0667.

    Google Scholar 

  • Harris, R. A. and Day, S. M. (1993) Dynamics of Fault Interaction: Parallel Strike-slip Faults, J. Geophys. Res. 98, 4461–4472.

    Article  Google Scholar 

  • Harris, R. A. and Day, S. M. (1999) Dynamic 3-D Simulations of Earthquakes on en echelon Faults, Geophys. Res. Lett. 26, 2089–2092.

    Google Scholar 

  • Huftile, G. J. and Yeats, R. S. (1996) Deformation Rates across the Placenta (Northridge M = 6.7 Aftershock Zone) and Hopper Canyon Segments of the Western Transverse Ranges Deformation Belt, Bull. Seismoc. Soc. Am. 86, S3—S18.

    Google Scholar 

  • Ida, Y. (1972) Cohesive Force across the Tip of a Longitudinal-shear Crack and Griffith’s Specific Surface Energy, J. Geophys. Res. 77, 3796–3805.

    Article  Google Scholar 

  • Kame, N., Rice, J. R., and Dmowska, R. (2003) Effects of Prestress State and Rupture Velocity on Dynamic Fault Branching, J. Geophys. Res. 108(B5), 2265, doi:10.1029/2002JB002189.

    Article  Google Scholar 

  • Kame, N. and Yamashita, T. (1997) Dynamic Nucleation Process of Shallow Earthquake Faulting in a Fault zone, Geophys. J. Int. 128, 204–216.

    Google Scholar 

  • Kame, N. and Yamashita, T. (1999) Simulation of the Spontaneous Growth of a Dynamic Crack without Constraints on the Crack Tip Path, Geophys. J. Int. 139, 345–358.

    Google Scholar 

  • Kase, Y. and Kuge, K. (1998) Numerical Simulation of Spontaneous Rupture Processes on Two Non-coplanar Faults: The Effect of Geometry on Fault Interaction, Geophys. J. Int. 135, 911–922.

    Google Scholar 

  • King, G. and Nábĕlek, J. (1985) Role of Fault Bends in the Initiation and Termination of Earthquake Rupture, Science 228, 984–987.

    Article  Google Scholar 

  • Marcinkovich, C. and Olsen, K.B. (2003) On the Implementation of Perfectly Matched Layers in a 3-D Fourth-order Velocity-stress Finite-difference Scheme, J. Geophys. Res. 2002JB002235.

    Google Scholar 

  • Mikumo, T. and Miyatake, T. (1993) Dynamic Rupture Processes on a Dip** Fault, and Estimates of Stress Drop and Strength Excess from the Results of Waveform Inversion, Geophys. J. Int. 112, 481–496.

    Google Scholar 

  • Mori, J., Wald, D. J., and Wesson, R. L. (1995) Overlap** Fault Planes of the 1971 San Fernando and 1994 Northridge, California Earthquake, Geophys. Res. Lett. 22, 1033–1036.

    Google Scholar 

  • Nielsen, S. and Olsen, K. B. (2000) Constraints on Stress and Friction from Dynamic Rupture Models of the 1994 Northridge, California, Earthquake, 157, 2029–2046.

    Google Scholar 

  • Oglesby, D. D. and Archuleta, R. J. (2003) The Three-dimensional Dynamics of a Non-planar Thrust Fault, Bull. Seismoc. Soc. Am. 93, 2222–2235.

    Article  Google Scholar 

  • Oglesby, D. D., Archuleta, R. J., and Nielsen, S. B. (2000a) The Three-dimensional Dynamics of Dip** Faults, Bull. Seismoc. Soc. Am. 90, 616–628.

    Article  Google Scholar 

  • Oglesby, D. D., Archuleta, R. J., and Nielsen, S. B. (2000b) Dynamics of Dip-slip Faulting: Explorations in Two Dimensions, J. Geophys. Res. 105, 13643–13653.

    Article  Google Scholar 

  • Oglesby, D. D., Day, S. M., Li, Y., and Vidale, J. E. (2001) The 1999 Hector Mine Earthquake: The Dynamics of a Branched Fault, Eos Trans. AGU, 82(47), Fall Meet. Suppl., Abstract S11C-05. Olsen, K. B. (1994) Simulation of Three-dimensional Wave Propagation in the Salt Lake Basin, Ph.D. Thesis, University of Utah.

    Google Scholar 

  • Olsen, K. B., Fukuyama, E., Aochi, H. and Madariaga, R. (1999) Hybrid Modeling of Curved Fault Radiation in a 3D Heterogeneous Medium, 2nd ACES Workshop Proceedings (ed. M. Matsu’ura, K. Nakajima and P. Mora) pp 343–349.

    Google Scholar 

  • Palmer, A. C. and Rice, J. R. (1973) The Growth of Slip Surfaces in the Progressive Failure of Overconsolidated Clay, Proc. Roy. Soc. Lond. A 332, 527–548.

    Article  Google Scholar 

  • Poliakov, A. N. B., Dmowska, R., and Rice, J. R. (2002) Dynamic Shear Rupture Interactions with Fault Bends and Off-axis Secondary Faulting, J. Geophys. Res. 107(B11), ESE 6, 1–18.

    Google Scholar 

  • Sibson, R. H. (1986) Rupture interaction with fault jogs, In Earthquake Source Mechanics, AGU Geophys. Mono., 37 (ed. S. Das, J. Boatwright and C. H. Scholz), (American Geophysical Union, Washington D. C.) pp 157–167.

    Chapter  Google Scholar 

  • Tada, T. and Yamashita, T. (1996) The Paradox of Smooth and Abrupt Bends in Two-dimensional In-plane Shear-crack Mechanics, Geophys. J. Int. 127, 795–800.

    Google Scholar 

  • Tada, T. and Yamashita, T. (1997) Non-hypersingular Boundary Integral Equations for Two-dimensional Non-planar Crack Analysis, Geophys. J. Int. 130, 269–282.

    Google Scholar 

  • Tada, T., Fukuyama, E. and Madariaga, R. (2000) Non-hypersingular Boundary Integral Equations for 3-D Non planar Crack Dynamics, Comp. Mech. 25, 613–626.

    Google Scholar 

  • Unruh, J. R., Twlss, R. J., and Hauksson, E. (1997) Kinematics of Postseismic Relaxation from Aftershock Focal Mechanisms of the 1994 Northridge, California, Earthquake, J. Geophys. Res. 102, 24,589–24,603.

    Article  Google Scholar 

  • Wald, D. J., Heaton, T. H., and Hudnut, K. W. (1996) The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-motion, Teleseismic, GPS, and Leveling Data, Bull. Seismoc. Soc. Am. 86, S49—S70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Aochi, H., Olsen, k. (2004). On The Effects Of Non-planar Geometry for Blind Thrust Faults on Strong Ground Motion. In: Donnellan, A., Mora, P., Matsu’ura, M., Yin, Xc. (eds) Computational Earthquake Science Part II. PAGEOPH Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7875-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7875-3_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7143-2

  • Online ISBN: 978-3-0348-7875-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation