Role of Biosurfactants in Remediation of Heavy Metals

  • Chapter
  • First Online:
Heavy Metal Remediation

Abstract

Environmental contamination by heavy metals is fast becoming a worldwide concern due to their non-degradable nature that enhance their accumulation in the environment. Several conventional methods are in used for treatment of contaminated sites but these methods are usually inefficient financially and negatively impact the qualities of contaminated areas. Therefore, there is a pressing requirement for more economically viable and minimally invasive strategies for detoxifying polluted areas of heavy metals. The exploitation of biosurfactants towards removal of heavy metals from the environment is an exciting new area of research. Micelle production is the fundamental principle of biosurfactants-mediated heavy metal removal. The pace at which metals are removed from contaminated locations is related to the type of biosurfactant generated by the producer strains. Biosurfactant is known to improve heavy metal removal from the environment via a number of mechanisms, the most important of which are complexation, ion exchange, and metal solubilization. Experiments showing that biosurfactants can help remove metals from a laboratory setting pave the way for their potential use on a larger scale. This section describes the properties, classification, and screening procedures of biosurfactants and the mechanisms by which biosurfactants remove heavy metals from soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamczak M, Bednarski W (2000) Properties and yield of synthesis of mannosylerythritol lipids by Candida antarctica. Biotechnol Prog 17:229–234

    CAS  Google Scholar 

  2. Ahuekwe EF, Okoli BE, Stanley HO, Kinigoma B (2016) Evaluation of hydrocarbon emulsification and heavy metal detoxification potentials of sophorolipid biosurfactants produced from waste substrates using yeast and mushroom. In: African health, safety, security, environment and social responsibility conference and exhibition. Society of Petroleum Engineers, Accra, Ghana, pp 1–16

    Google Scholar 

  3. Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR (2018) Biosurfactants: a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2:81–90

    Article  Google Scholar 

  4. Akintunde TA, Abioye OP, Oyeleke SB, Boboye BE, Ijah UJJ (2015) Remediation of iron using rhamnolipid-surfactant produced by Pseudomonas aeruginosa. Res J Environ Sci 9:169–177

    Article  Google Scholar 

  5. Alloway BJ, Ayres DC (1997) Chemical principles of environmental pollution. Blackie Academic and Professional, 2nd edn. CRC Press London

    Google Scholar 

  6. Arab F, Mulligan CN (2018) An eco-friendly method for heavy metal removal from mine tailings. Environ Sci Pollut Res 25:16202–16216

    Article  CAS  Google Scholar 

  7. Arora PK (2020) Bacilli-mediated degradation of xenobiotic compounds and heavy metals. Front Bioeng Biotech 8:570307

    Article  Google Scholar 

  8. Arora S, Jain CK, Lokhande RS (2017) Review of heavy metal contamination. Int J Environ Sci Nat Resour 3:139–144

    Google Scholar 

  9. Aşçı Y, Nurbaş M, Açıkel YS (2010) Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. J Environ Manage 91(3):724–731

    Article  Google Scholar 

  10. Ayangbenro AS, Babalola OO (2018) Metal (loid) bioremediation: strategies employed by microbial polymers. Sustainability 10(9):3028

    Article  CAS  Google Scholar 

  11. Ayangbenro AS, Babalola OO (2020) Genomic analysis of Bacillus cereus NWUAB01 and its heavy metal removal from polluted soils. Sci Rep 10:19660

    Article  CAS  Google Scholar 

  12. Bachmann RT, Johnson AC, Edyvean RG (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–273

    Article  CAS  Google Scholar 

  13. Banat IM, Franzetti A, Gandolfi I (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  Google Scholar 

  14. Basak G, Das N (2014) Characterization of sophorolipid biosurfactants produced by Cryptococcus sp. VITGBN2 and its application on Zn(II) removal from electroplating wastewater. J Environ Biol 35:1087–1094

    Google Scholar 

  15. Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol Environ Saf 147:102–109

    Article  CAS  Google Scholar 

  16. Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S (2021) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827

    Article  CAS  Google Scholar 

  17. Bodek I, Lyman WJ, Reehl WF (1998) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, New York

    Google Scholar 

  18. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32(3):273–280

    Article  CAS  Google Scholar 

  19. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266

    Article  CAS  Google Scholar 

  20. Cameron RE (1992) Guide to site and soil description for hazardous waste site characterization metals, vol 1. Environmental Protection Agency, Las Vegas, EPA/ 600/4-91/029

    Google Scholar 

  21. Carolin F, Kumar SP, Ngueagni PT (2021) A review on new aspect of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation. J Hazard Mater 407:124827

    Article  Google Scholar 

  22. Cavalero DA, Cooper DG (2003) The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol 103(1):31–41

    Article  CAS  Google Scholar 

  23. Chakrabarti S (2012) Bacterial biosurfactant: characterization, antimicrobial and metal remediation properties (Doctoral dissertation)

    Google Scholar 

  24. Chen CY, Baker SC, Darton RC (2007) The application of a high throughput analysis method for the screening of potential biosurfactants from natural sources. J Microbiol Methods 70(3):503–510

    Article  CAS  Google Scholar 

  25. Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum‐contaminated soil. J Appl Microbiol 112(4):660–671

    Google Scholar 

  26. Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J Water Process Eng. 26:289–300

    Article  Google Scholar 

  27. Cooper D, Goldenberg B (1997) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    Article  Google Scholar 

  28. Czinkóczky R, Németh Á (2020) The effect of pH on biosurfactant production by Bacillus subtilis DSM10. Hung J Ind Chem 37–43

    Google Scholar 

  29. da Rocha Junior RB, Meira HM, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2019) Application of a low-cost biosurfactant in heavy metal remediation processes. Int Biodeterior 30:215–233

    Google Scholar 

  30. Das AJ, Lal S, Kumar R, Verma C (2017) Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metal and co-contaminated soil. Int J Environ Sci Technol 14:1343–1354

    Article  Google Scholar 

  31. Dell’Anno F, Sansone C, Ianora A, Dell’Anno A (2018) Biosurfactant-induced remediation of contaminated marine sediments: current knowledge and future perspectives. Mar Environ Res 137:196–205

    Article  Google Scholar 

  32. Dhaliwal SS, Can J, Taneja PK, Mandal A (2020) Remediation techniques for removal of heavy metals from soil contaminated through different sources: a review. Environ Sci Pollut Res Int 27:1319–1333

    Google Scholar 

  33. Ehinmitola EO, Aransiola EF, Adeagbo OP (2018) Comparative study of various carbon sources on rhamnolipid production. S Afr J Chem Eng 26:42–48

    Google Scholar 

  34. Elouzi AA, Akansha AA, Elgerbi AM, El-Baseir M, El Gammudi BA (2012). Removal of heavy metal contamination by Bio-surfactants (rhamnolipids). J Chem Pharm Res 4:4337–4341

    Google Scholar 

  35. Fakruddin Md (2012) Biosurfactant: production and application. J Pet Environ Biotechnol 3(4):124

    Google Scholar 

  36. Fardami AY, Kawo AH, Yahaya S, Lawal I, Abubakar AS, Maiyadi KA (2022) A review on biosurfactant properties, production and producing microorganisms. J Biochem Microbiol Biotech 10(1):5–12

    Article  Google Scholar 

  37. Fashola MO, Ngole-Jeme VM, Babalola OO (2016) Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Public Health 13(11):1047

    Article  Google Scholar 

  38. Fooladi T, Hamid ABA, Yusoff WMW, Moazami N, Shafiee Z (2013) Production of biosurfactant by indigenous isolated bacteria in fermentation system. In AIP Conf Proc 1571(1):197–201

    Article  CAS  Google Scholar 

  39. Gaith ESI, Rizvi S, Namasivayam C, Rahman PKSM (2019) Removal of Cd++ from contaminated water using bio-surfactant modified ground grass as a biosorbent. In: Advances in science and engineering technology international conference (ASET). IEEE, Dubai, United Arab Emirates, pp 1–7

    Google Scholar 

  40. Gomaa EZ, El-Meihy RM (2019) Bacterial biosurfactant from Citrobacter freundii MG812314.1 as a bioremoval tool of heavy metals from wastewater. Bull Natl Res Cent 43:69

    Google Scholar 

  41. Gonzalez Henao S, Ghneim-Herrera T (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 15

    Google Scholar 

  42. Gupta P, Kumar V (2017) Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World J Microbiol Biotechnol 33:1–15

    Article  CAS  Google Scholar 

  43. Hanfi MY, Mostafa MYA, Zhukovsky MV (2020) Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess 192:32

    Article  CAS  Google Scholar 

  44. He X, Qiu X, Chen J (2017) Preparation of Fe(II)-Al layered double hydroxide: application to the adsorption/reduction of chromium. Colloids Surf A Physiochem Eng Asp 516:362–374

    Article  CAS  Google Scholar 

  45. Hisham NHB, Ibrahim MF, Ramil N, Abd-Aziz (2019) Production of biosurfactant produced from used cooking oil by Bacillus sp. HIP3 for heavy metals removal. Molecules 24:2617

    Google Scholar 

  46. Ilori MO, Amobi CJ, Odocha AC (2005) Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment. Chemosphere 61(7):985–992

    Google Scholar 

  47. Ines M, Dhouha G (2015) Lipopeptide surfactant: production recovery and pore forming capacity. Peptides 71:100–112

    Article  CAS  Google Scholar 

  48. Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13(4):271–279

    Article  Google Scholar 

  49. Joy S, Rahman PK, Sharma S (2017) Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. J Chem Eng 317:232–241

    Article  CAS  Google Scholar 

  50. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  Google Scholar 

  51. Kumar M, Gogoi A, Kumari D, Borah R (2017) Review of perspective, problem, challenges and future scenario of metal contamination in the urban environment. J Hazard Toxic Radioact Waste 21:4

    Article  Google Scholar 

  52. Lal S, Ratna S, Said OB, Kumar R (2018) Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environ Technol Innov 10:243–263

    Article  Google Scholar 

  53. Li Q (2017) Rhamnolipid synthesis and production with diverse resources. Front Chem Sci Eng 11:27–37

    Article  CAS  Google Scholar 

  54. Lopes CSC, Teixeira DB, Braz BF, Santelli RE, de Castilho LVA, Gomez JGC, Castro RPV, Seldin L, Frire DMG (2021) Application of rhamnolipid surfactant for remediation of toxic metals of long and short-term contaminated sites. Int J Environ Sci Technol 18:575–588

    Article  CAS  Google Scholar 

  55. Lu J, Zhang B, He C, Borthwick AGL (2020) The role of natural Fe(II)-bearing minerals in chemoautotrophic chromium (VI) bio-reduction in ground water. J Hazard Mater 389:121911

    Article  CAS  Google Scholar 

  56. Luna JM, Leonie DR, Sarubbo A (2016) Biosurfactant from Candida sphaerica UCP0995 exhibiting heavy metal remediation properties. Process Saf Environ 102:558–566

    Article  CAS  Google Scholar 

  57. Maczek J, Junne S, Götz P (2007) Examining biosurfactant producing bacteria—an example for an automated search for natural compounds. Appl Note CyBio AG

    Google Scholar 

  58. Mao X, Jiang R, **ao W, Yu J (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  Google Scholar 

  59. Maqsood MI, Jamal A (2011) Factors affecting the rhamnolipid biosurfactant production. Pakistan J Biotechnol 8(1):1–5

    Google Scholar 

  60. Mishra S, Bharagava RN (2016) Toxic and genotoxic effect of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 34:1–32

    Google Scholar 

  61. Mishra S, Bharagava RN, More N, Yadav S, Zainith S, Mani S, Chowdhary P (2019) Heavy metal contamination: an alarming threat to environment and human health. In: Environmental biotechnology for sustainable future. Springer, Singapore, pp 103–125

    Google Scholar 

  62. Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S (2021) Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. J Hazard Mater 418:126253

    Article  CAS  Google Scholar 

  63. Mohan PK, Nakhla G, Yanful EK (2006) Biodegradability of surfactants under aerobic, anoxic, and anaerobic conditions. Int J Environ Eng 132(2):279–283

    CAS  Google Scholar 

  64. Morikawa M, Hirata Y, Imanaka TA (2000) A Study on the structure function relationship of lipopeptide bio-surfactants. Biochem Biopsy’s Acta. 1488(3):211–218

    CAS  Google Scholar 

  65. Mouafo TH, Mbawala A, Ndjouenkeu R (2018) Effect of different carbon sources on biosurfactants’ production by three strains of Lactobacillus spp. Biomed Res Int

    Google Scholar 

  66. Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162(4):366–380

    Article  Google Scholar 

  67. Mulligan CN (2021) Sustainable remediation of contaminated soil using biosurfactants. Front Bioeng Biotech 9:635196

    Article  Google Scholar 

  68. Mulligan CN, Sharma SK, Mudhoo A (2014) Biosurfactants: research trends and applications. CRC Press, Boca Raton, Florida

    Book  Google Scholar 

  69. Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  CAS  Google Scholar 

  70. Nurfarahin AH, Mohamed MS, Phang LY (2018) Culture medium development for microbial-derived surfactants production—an overview. Mol 23(5):1049

    Article  Google Scholar 

  71. Nwaguma I, Chikere C, Okpokwasili G (2016) Isolation, characterization and application of biosurfactant by Klebsiella pneumonia strain IVN51 isolated from hydrocarbon-polluted soil Ogoniland Nigeria. Bioresour Bioprocess 3:40

    Article  Google Scholar 

  72. Obayori OS, Fashola MO, Ashade AO, Opere BO, Adeoye SP, Adeyeye MO (2022) Isolation and characterization of biosurfactant producing bacteria from Mile 2 and Ologe Lagoons Nigeria. Malays J Microbiol 18:1

    Google Scholar 

  73. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  74. Pan ZF, An L (2019) Removal of heavy metal from wastewater using ion exchange membranes. In: Ahamed MI, Asiri AM (eds) Application of ion exchange materials in the environment. Springer, pp 25–46

    Google Scholar 

  75. Parthipan P, Preetham E, Machuca LL, Rahman PK, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193

    Article  Google Scholar 

  76. Peng H, Guo J (2020) Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption, electrochemical reduction, electrodialysis, electrodeionization photocatalysis and nanotechnology: a review. Environ Chem Lett 18:2055–2068

    Article  CAS  Google Scholar 

  77. Plaza G, Achal V (2020) Biosurfactants: eco-friendly and innovative biocides against biocorrosion. Int J Mol Sci 21:2152

    Article  CAS  Google Scholar 

  78. Plaza G, Zjawiony I, Banat I (2006) Use of different methods for detection of thermophilic biosurfactants producing bacteria from hydrocarbon contaminated and bio remediated soils. J Petro Science Eng. 50(1):71–77

    Article  CAS  Google Scholar 

  79. Poirier A, Ozkaya K, Gredziak J, Talbot D, Baccile N (2023) Heavy metal removal from water using the metallogelation properties of a new glycolipid biosurfactant. J Surfactants Deterg 26(2):175–184

    Article  CAS  Google Scholar 

  80. Qin H, Hu T, Zhai Y, Lu N, Aliyeva J (2020) The improved methods of heavy metal removal by biosorbents: a review. Environ Pollut 258:113777

    Article  CAS  Google Scholar 

  81. Ravindran A, Sajayan A, Priyadharshini GB, Selvin J, Kiran GS (2020) Revealing the efficacy of thermostable biosurfactant in heavy metal bioremediation and surface treatment in vegetables. Front Microbiol 11:222

    Article  Google Scholar 

  82. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  Google Scholar 

  83. Sah D, Rai JPN, Ghosh A, Chakraborty M (2022) A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 12(9):218

    Google Scholar 

  84. Saikia RR, Deka S, Deka M, Banat IM (2012) Isolation of biosurfactant-producing Pseudomonas aeruginosa RS29 from oil-contaminated soil and evaluation of different nitrogen sources in biosurfactant production. Ann Microbiol 62:753–763

    Article  CAS  Google Scholar 

  85. Shekhar S, Sundaramanickam A, Balasubramaniam T (2014) Biosurfactant producing microbes and its potential applications: a review. Crit Rev Environ Sci Technol 45:1522–1554

    Article  Google Scholar 

  86. Silva RL, Farias CBB, Rufino RD (2010) Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf B: Biointerf 79:174–183

    Article  CAS  Google Scholar 

  87. Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophys Res Commun 319(2):291–297

    Article  CAS  Google Scholar 

  88. Tadros T (2005) Adsorption of surfactants at the air/liquid and liquid/liquid interfaces. Applied surfactants: principles and applications. Wiley VCH, Weinheim, pp 81–82

    Chapter  Google Scholar 

  89. Tang J, Zhnag J, Ren L, Zhou Y, Gao J, Yang Y, Peng Q, Huang H, Chen A (2019) Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution. J Environ Manag 242:121–130

    Article  CAS  Google Scholar 

  90. Tuleva B, Christova N, Jordanov B, Nikolova-Damyanova B, Petrov P (2005) Naphthalene degradation and biosurfactant activity by Bacillus cereus 28BN. Z Naturforsch C 60(7–8):577–582

    Google Scholar 

  91. Wang Z, Zhang B, He C, Shi J, Wu M, Guo J (2021) Sulfur-based microtrophic vanadium (V) bioreduction towards lower organic requirement and sulfate accumulation. Water Res 189:116655

    Article  CAS  Google Scholar 

  92. Wei YH, Lai CC, Chang JS (2007) Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem 42(1):40–45

    Article  CAS  Google Scholar 

  93. Wei YH, Chou CL, Chang JS (2005) Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochem Eng J 27:146–154

    Article  CAS  Google Scholar 

  94. William CW (2014) Phosphotidylethanolamine and related lipids: structure, occurrence, biochemistry and analysis. The Am Oil Chem Soc Lipid Libr. Lipid Web

    Google Scholar 

  95. Yan P, Lu M, Yang Q, Zhang H, Zhang Z, Chen R (2012) Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas. Bioresour Technol 116:24–28

    Article  CAS  Google Scholar 

  96. Yin K, Lv M, Wang Q (2016) Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res 103:383–390

    Article  CAS  Google Scholar 

  97. Yu G, Wang X, Liu J, Jiang P, You S, Ding N, Guo Q, Lin F (2021) Applications of nanomaterials for heavy metal removal from water and soil: a review. Sustainability 13:713

    Article  CAS  Google Scholar 

  98. Zhang B, Li Y, Fei Y, Cheng Y (2021) Novel pathway for vanadium (V) biodetoxification by Gram positive Lactococcus raffinolactis. Environ Sci Technol 55:2121–2131

    Article  CAS  Google Scholar 

  99. Zhao F, Zhou JD, Ma F, Shi RJ, Han SQ, Zhang J, Zhang Y (2016) Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: applications for microbial enhanced oil recovery. Bioresour Technol 207:24–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muibat Omotola Fashola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fashola, M.O., Anagun, O.S., Ashade, A.O., Babalola, O.O. (2024). Role of Biosurfactants in Remediation of Heavy Metals. In: Kumar, N. (eds) Heavy Metal Remediation. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-031-53688-5_8

Download citation

Publish with us

Policies and ethics

Navigation