Log in

Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metals and co-contaminated soil

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Environmental pollution due to heavy metals has become a significant drawback as a result of their ecotoxicity. Hence, their remediation is of pressing concern. Many technologies are planned for their remediation; however, most of them are highly expensive and result in incomplete removal of contaminants. So, massive attention has paid to the event and application of the latest biologically techniques, that is effective in remedy and cost, not harming the prevailing surroundings. Hence, application of biosurfactant in heavy metal remediation is one among the recent ecofriendly technique. The present review critically highlights bacterial biosurfactants as a best alternative technique for heavy metals remediation. The review also emphasizes that bacterial biosurfactants can open up a new vista in remediation of metal-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Ame SP (2012) Influence of integrated application of organic and inorganic fertilizers on chemical properties of a degraded acid Alfisol in southwestern Nigeria. J Pure Appl Sci 51:822–828

    Google Scholar 

  • Asante-Duah DK (1997) Managing contaminated sites. Wiley, New York

    Google Scholar 

  • Aşçı Y, Nurbas M, Acikel YS (2008) A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J Hazard Mater 154:663–673

    Article  Google Scholar 

  • Baeicii H, Stotzky G (1983) Toxicity of nickel to microbes: environmental aspects. Adv Appl Microbiol 29:195

    Article  Google Scholar 

  • Borjana KT, George RI, Nelly EC (2001) Biosurfactant production by a new Pseudomonas putida strain. Am J Sci Ind Res 57:356–360

    Google Scholar 

  • Cauwenberg P, Verdonckt F, Maes A (1998) Flotation as a remediation technique for heavily polluted dredged material. 2. Characterisation of flotated fractions. Sci Total Environ 209(2):121–131

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  Google Scholar 

  • Choi JM, Pak CH, Lee CW (1996) Micronutrient toxicity in french marigold. J Plant Nutr 19:901–916

    Article  CAS  Google Scholar 

  • Chu W, Chan KH (2003) The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. Sci Total Environ 307:83–92

    Article  CAS  Google Scholar 

  • Cornelissen G, Elmquist Kruså M, Breedveld GD, Eek E, Oen AM, Arp HPH, Raymond C et al (2011) Remediation of contaminated marine sediment using thin-layer cap** with activated carbon a field experiment in Trondheim Harbor, Norway. Environ Sci Technol 45:6110–6116

    Article  CAS  Google Scholar 

  • Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69:705–711

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890

    Article  CAS  Google Scholar 

  • Das AJ, Shastri B, Lal S, Kumar R (2016) Bioremediation of Petroleum Hydrocarbons and Heavy Metal Contaminated Sites by Biosurfactants: An Eco-friendly and Sustainable Technology. In: Bhargava RN, Saxena G (eds) Bioremediation of Industrial Pollutants, Chapter 3. Educationist Press (Write and PrintPublications)

  • Davies TS, Ketner AM, Raghavan SR (2006) Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J Am Chem Soc 128:6669–6675

    Article  CAS  Google Scholar 

  • De S, Malik S, Ghosh A, Saha R, Saha B (2015) A review on natural surfactants. RSC Adv 5:65757–65767

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol R 61:47–64

    CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25:687–693

    Article  CAS  Google Scholar 

  • Duffus John H (2002) Heavy metals “a meaningless term? (IUPAC Technical Report)”. Pure Appl Chem 74:793–807

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Engberts JBFN, Kevelam J (1996) Formation and stability of micelles and vesicles. Curr Opin Coll Inter Sci 1:779–789

    Article  CAS  Google Scholar 

  • European Union (2002) Heavy metals in wastes. European Commission on Environment. http://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf

  • Exma LT (2012) Responses of an acid Alfisol and maize yield to wood ash based soil amendments. J Food Agric Res 31:42–427

    Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2:1

    Google Scholar 

  • Fontes RLS, Cox FR (1998) Zinc toxicity in soybean grown at high iron concentration in nutrient solution. J Plant Nutr 21:1723–1730

    Article  CAS  Google Scholar 

  • Fosmire GJ (1990) Zinc Toxicity. Am J. Clinical Nutrition 51(2):225–227

    CAS  Google Scholar 

  • Franzetti A, Bestetti G, Caredda P, Colla-La P, Tamburini E (2008) Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol Ecol 63:238–248

    Article  CAS  Google Scholar 

  • Frazer L (2000) Lipid lather removes metals. Environ Health Perspect 108:320–323

    Article  Google Scholar 

  • Georgiou G, Lin SC, Sharma MM (1992) Surface active compounds from microorganisms. Biotechnology 10:60–65

    Article  CAS  Google Scholar 

  • Geys R, Soetaert W, Bogaer IV (2014) Biotechnological opportunities in biosurfactant production. Curr Opin Biotechnol 30:66–72

    Article  CAS  Google Scholar 

  • Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB (2010) Microbial products (biosurfactant and extra cellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloid Surf B 79:334–339

    Article  CAS  Google Scholar 

  • Gome HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445:237–260

    Article  Google Scholar 

  • Guman SB (2011) Influence of poultry manure amended calcium ammonium nitrate on chemical properties of an Alfisol. Soil Sci Environ Qual 36:14–149

    Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    Article  CAS  Google Scholar 

  • INECAR (2000) Institute of environmental conservation and research position paper against mining in Rapu-Rapu, published by INECAR, Ateneo de Naga University, Philippines. www.adnu.edu.ph/Institutes/Inecar/pospaper1.asp

  • Irwin RJ, Van Mouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia. Selenium entry. Nat Park Serv Suite 250, Fort Collons, Colorado

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian J Microbiol 48:142–146

    Article  CAS  Google Scholar 

  • Kader E (2012) Nitrogen and phosphorus uptake by maize as affected by organic matter quality, soil characteristics and land use history of soils from southwestern Nigeria. Soil Fertil Bull 18:222–227

    Google Scholar 

  • Kanga SH, Bonner JS, Page CA, Mills MA, Autenrieth RL (1997) Solubilization of naphthalene from crude oil using biosurfactants. Environ Sci Tech 31:556–561

    Article  CAS  Google Scholar 

  • Kantor D (2006) Guillain-Barre syndrome, the medical encyclopedia, National Library of Medicine and National Institute of Health. www.nlm.nih.gov/medlineplus/

  • Kapadia SG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4(1):1–8

    CAS  Google Scholar 

  • Kappeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane grown Acinetobacter. J Bacteriol 140:707–712

    CAS  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kiani MJ, Abbas KM, Rahim N (2005) Use of organic manure with mineral N-fertilizers to increase wheat yield at Rawakalot Azad. Arch Agron Soil Sci 51:299–309

    Article  Google Scholar 

  • Kiran G, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  Google Scholar 

  • Kumar R, Das AJ, Juwarkar A (2015a) Reclamation of petrol oil contaminated soil by rhamnolipids producing PGPR strains for growing Withania somnifera a medicinal shrub. World J Microbiol Biotechnol. doi:10.1007/s11274-014-1782-1

    Google Scholar 

  • Kumar R, Das AJ, Lal S (2015b) Petroleum hydrocarbon stress management in soil using microorganisms and their products. Waste Management Edited by Environmental Ram Chandra. CRC press Taylor and Francis. ISBN 9781498724746 -CAT# K25742

  • Lee LS, Zhai X (2007) Indot guidance document for in situ soil flushing. FHWA/IN/JTRP-2006/28. Purdue University. pp.1-48

  • Lee CW, Choi JM, Pak CH (1996) Micronutrient toxicity in seed geranium 376 (Pelargonium×hortorum Baley). J. Am Soc Hortic Sci 121:77–82

    CAS  Google Scholar 

  • Lege BN (2012) Soil chemical properties as affected by phosphorus and nitrogen—based manure and compost application. Soil Conserv 21:411–416

    Google Scholar 

  • Lenntech water treatment and air purification (2004) Water treatment, published by Lenntech, Rotterdamseweg, Netherlands. www.excelwater.com/thp/filters/Water-379Purification.htm

  • Lima TMS, Procópio LC, Brandao FD, Carvalho AMX, Totola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22:585–592

    Article  CAS  Google Scholar 

  • Maier RM, Neilson JW, Artiola JF, Jordan FL, Glenn EP, Descher SM (2001) Remediation of metal-contaminated soil and sludge using biosurfactant technology. Int J Occup Med Environ Health 14:241–248

    CAS  Google Scholar 

  • Malakul P, Srinivasan KR, Wang HS (1998) Metal toxicity reduction in naphthalene biodegradation by use of metal-chelating adsorbents. Appl Environ Microbiol 64:4610–4613

    CAS  Google Scholar 

  • McCluggage D (1991) Heavy metal poisoning, NCS magazine published by The Bird Hospital, CO, USA. www.cockatiels.org/articles/Diseases/metals.html

  • Meghraj H, Daneshwar P (2013) Isolation and identification of heavy metals tolerant bacteria from industrial and agricultural areas in mauritius. Curr Res Microbiol Biotechnol 1:119–123

    Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanism constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  CAS  Google Scholar 

  • Miller RM (1995) Biosurfactant facilitated remediation of contaminated soil. Environ Health Perspect 103:59–62

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O Kuntze. Environ Toxicol 22:368–374

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Indian Nat Sci Acad 1:31–55

    Google Scholar 

  • Mulligan CN, Yong CN, Gibbs BF (1999) Removal of heavy metals from contaminated soil and sediments using the biosurfactant surfactin. J Soil Contam 8:231–254

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001a) Surfactant enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Mulligan CN, Yong CN, Gibbs BF (2001b) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125

    Article  CAS  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747

    CAS  Google Scholar 

  • Nerurkar AS (2010) Structural and molecular characteristics of lichenysin and its relationship with surface activity. Adv Exp Med Biol 672:15

    Google Scholar 

  • Nguyen TT, Youssef NH, McInerney MJ, Sabatini DA (2008) Rhamnolipid biosurfactant mixtures for environmental remediation. Water Res 42:1735–1743

    Article  CAS  Google Scholar 

  • Niroumand H, Nazir R, Kassim KA (2012) The performance of electrochemical remediation technologies in soil mechanics. Int J Electrochem Sci 7(6):5708–5715

    CAS  Google Scholar 

  • Nitschke M, Coast SG (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psychiatry 12(4):270–282

    Google Scholar 

  • Ogwuegbu MO, Ijioma MA (2003) Effects of certain heavy metals on the population due to mineral exploitation. International conference on scientific and environmental issues in the population. University of Ado Ekiti, Ekiti State, Nigerian, Environment and Sustainable Development in Nigeria, pp 8–10

    Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copperbelt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Ouzounidou G (1995) Effect of copper on germination and seedling growth of Minuatia, Silene, Alyssum and Thlaspi. Biol Plant 37:411–416

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  Google Scholar 

  • Pandey G, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Ani Vet Fish Sci 2(2):17–23

    CAS  Google Scholar 

  • Pankow JF, Cherry JA (1996) Dense Chlorinated Solvents and other DNAPLs in Ground-Water. Waterloo Press, Portland

    Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J hazard Mater 161(2):633–640

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Chem Biol 13:249–252

    CAS  Google Scholar 

  • Scoccianti V, Crinelli R, Tirillini B, Mancinelli V, Speranza A (2006) Uptake and toxicity of Cr (Cr3+) in celery seedlings. Chemosphere 64:1695–1703

    Article  CAS  Google Scholar 

  • Sekar MP (2013) Evaluation of the influence of liming on exchange acidity and grain yield of maize. Int J Agric Sci 62:231–238

    Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals a review. Soil Sediment Contam An Int J 23(4):389–416

    Article  CAS  Google Scholar 

  • Shao Z (2011) Trehalolipids. Microbiol Monogr 20:121–143

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Brazil J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    Article  CAS  Google Scholar 

  • Shukla A, Cameotra SS (2012) Hydrocarbon pollution: effects on living organisms, remediation of contaminated environments, and effects of heavy metals co-contamination on bioremediation. In Romero-Zerón, L. (Ed.) Introduction to enhanced oil recovery (EOR) processes and bioremediation of oil-contaminated sites, ISBN 978-953-51-0629-6, doi:10.5772/48014, 185-206

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophy Res Comm 319:291–297

    Article  CAS  Google Scholar 

  • Soberón-Chávez G, Maier RM (2011) Biosurfactants: A general overview. In: Soberón-Chávez G (ed) Biosurfactants. Springer, Berlin, Germany, pp 1–11

    Chapter  Google Scholar 

  • Sobolev DK, Begonia MFT (2008) Effects of heavy metal contamination upon soil microbes: lead-induced changes in general and denitrifying microbial communities as evidenced by molecular markers. Int J Environ Res Pub Health 5(5):450–456

    Article  CAS  Google Scholar 

  • Tan H, Champion JT, Artiola JF, Brusseau ML, Miller RM (1994) Complexation of cadmium by a rhamnolipid biosurfactant. Environ Sci Technol 28:2402–2406

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. doi:10.1155/2011/939161

    Article  Google Scholar 

  • Theofanis ZU, Astrid S, Lidia G, Calmano WG (2001) Contaminants in sediments: remobilisation and demobilization. Sci Total Environ 266:195–202

    Article  Google Scholar 

  • Todd RS, Andrea MC, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation. Appl Environ Microbiol 66:4585–4588

    Article  Google Scholar 

  • Torrens JL, Herman DC, Miller RM (1998) Biosurfactant (Rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environ Sci Technol 32:776–781

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for washing of crude oil-contaminated soil with biosurfactant solutions. Process Saf Environ Protec Trans Inst Chem Eng Part B 81(3):203–209

    Article  CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nympaea alba L. Chemosphere 41:1075–1082

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2009) Arsenic mobilization from mine tailings in the presence of a biosurfactant. Appl Geochem 24:928–935

    Article  CAS  Google Scholar 

  • Wang D, Liu Y, Lin Z, Yang Z, Hao C (2008) Isolation and identification of surfactin producing Bacillus subtilis strain and its effect of surfactin on crude oil. Wei Sheng Wu Xue Bao 48(3):304–311

    CAS  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

  • Wojcik M, Tukiendorf A (2004) Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant Growth Regul 44:71–80

    Article  CAS  Google Scholar 

  • **e YW, Li Y, Ye R (2005) Effect of alcohols on the phase behavior of microemulsions formed by a biosurfactant-rhamnolipid. J Disper Sci Technol 26:455–461

    Article  CAS  Google Scholar 

  • Yeung AT, Gu YY (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29

    Article  CAS  Google Scholar 

  • Zhang WH, Tyerman SD (1999) Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol 120:849–857

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research support received from DST Inspire program by author Amar Jyoti Das is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumar.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A.J., Lal, S., Kumar, R. et al. Bacterial biosurfactants can be an ecofriendly and advanced technology for remediation of heavy metals and co-contaminated soil. Int. J. Environ. Sci. Technol. 14, 1343–1354 (2017). https://doi.org/10.1007/s13762-016-1183-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1183-0

Keywords

Navigation