A Blueprint for Sustainable Electrification by Designing and Implementing PV Systems in Small Scales

  • Conference paper
  • First Online:
Unified Vision for a Sustainable Future (CEGS 2024)

Abstract

This chapter presents a comprehensive analysis of the planning, design, and implementation of photovoltaic (PV) systems, emphasizing their role in sustainable rural electrification and renewable energy integration. The chapter begins by examining the integration of solar energy into the electricity market, highlighting its contribution to energy security and climate change mitigation. It deals with the challenges and dynamics of incorporating distributed energy resources, with a special focus on solar PV systems. The chapter methodically explores the planning and design aspects of PV systems, considering factors like site location, climatic conditions, and grid connectivity. A case study on electrifying a rural community provides practical insights into the application of these principles. This chapter further details the components, specifications, and costs of PV systems, presenting exhaustive tables and guidelines for implementation. It also includes calculations and estimations essential for system balance and optimization, covering environmental, technical, and economic aspects. The chapter concludes with a discussion of lessons learned and provides a comprehensive conclusion, synthesizing the key findings and implications of the study for future renewable energy projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sward, J.A., Siff, J., Gu, J., Zhang, K.M.: Strategic planning for utility-scale solar photovoltaic development – historical peak events revisited. Appl. Energy. 250, 1292–1301 (2019). https://doi.org/10.1016/j.apenergy.2019.04.178

    Article  Google Scholar 

  2. Lazaroiu, A.C., Gmal Osman, M., Strejoiu, C.-V., Lazaroiu, G.: A comprehensive overview of photovoltaic technologies and their efficiency for climate neutrality. Sustain. For. 15, 16297 (2023). https://doi.org/10.3390/su152316297

    Article  Google Scholar 

  3. Danish, M.S.S., Senjyu, T., Ibrahimi, A.M., Ahmadi, M., Howlader, A.M.: A managed framework for energy-efficient building. J. Build. Eng. 21, 120–128 (2019). https://doi.org/10.1016/j.jobe.2018.10.013

    Article  Google Scholar 

  4. Danish, M.S.S., Senjyu, T., Zaheb, H., Sabory, N.R., Ibrahimi, A.M., Matayoshi, H.: A novel transdisciplinary paradigm for municipal solid waste to energy. J. Clean. Prod. 233, 880–892 (2019). https://doi.org/10.1016/j.jclepro.2019.05.402

    Article  Google Scholar 

  5. Danish, M.S.S.: Exploring metal oxides for the hydrogen evolution reaction (HER) in the field of nanotechnology. RSC Sustain. 1, 2180–2196 (2023). https://doi.org/10.1039/D3SU00179B

    Article  Google Scholar 

  6. Ahmadi, M., Lotfy, M.E., Danish, M.S.S., Ryuto, S., Yona, A., Senjyu, T.: Optimal multi-configuration and allocation of SVR, capacitor, centralised wind farm, and energy storage system: a multi-objective approach in a real distribution network. IET Renew. Power Gener. 13, 762–773 (2019). https://doi.org/10.1049/iet-rpg.2018.5057

    Article  Google Scholar 

  7. Adewuyi, O.B., Shigenobu, R., Senjyu, T., Lotfy, M.E., Howlader, A.M.: Multiobjective mix generation planning considering utility-scale solar PV system and voltage stability: Nigerian case study. Electr. Power Syst. Res. 168, 269–282 (2019). https://doi.org/10.1016/j.epsr.2018.12.010

    Article  Google Scholar 

  8. Vangala, S., Hung, K., South, D.: Revisiting the Biden Administration’s approach to climate change. Climate Energy. 39, 1–12 (2022). https://doi.org/10.1002/gas.22299

    Article  Google Scholar 

  9. Ahmadi, M., Jafari, S., Quraishi, H., Zaheb, H., Danish, M.S.S., Senjyu, T.: Partial deployment of rooftop solar and an energy efficiency approach for decreasing grid dependency. In: 2021 International Conference on Science Contemporary Technologies (ICSCT), pp. 1–8. IEEE, Dhaka (2021). https://doi.org/10.1109/ICSCT53883.2021.9642529

    Chapter  Google Scholar 

  10. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.D.: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sust. Energ. Rev. 124, 109792 (2020). https://doi.org/10.1016/j.rser.2020.109792

    Article  Google Scholar 

  11. Shams, S., Danish, M.S.S., Sabory, N.R.: Solar energy market and policy instrument analysis to support sustainable development. In: Danish, M.S.S., Senjyu, T., Sabory, N.R. (eds.) Sustainability Outreach in Develo** Countries, pp. 113–132. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7179-4_8

    Chapter  Google Scholar 

  12. Danish, S.M.S., Ahmadi, M., Danish, M.S.S., Mandal, P., Yona, A., Senjyu, T.: A coherent strategy for peak load shaving using energy storage systems. J. Energy Storage. 32, 101823 (2020). https://doi.org/10.1016/j.est.2020.101823

    Article  Google Scholar 

  13. Danish, M.S.S., Nazari, Z., Senjyu, T.: AI-coherent data-driven forecasting model for a combined cycle power plant. Energy Convers. Manag. 286, 117063 (2023). https://doi.org/10.1016/j.enconman.2023.117063

    Article  Google Scholar 

  14. Naranjo Palacio, S., Valentine, K.F., Wong, M., Zhang, K.M.: Reducing power system costs with thermal energy storage. Appl. Energy. 129, 228–237 (2014). https://doi.org/10.1016/j.apenergy.2014.04.089

    Article  Google Scholar 

  15. Driesen, J., Katiraei, F.: Design for distributed energy resources. IEEE Power Energy Mag. 6, 30–40 (2008). https://doi.org/10.1109/MPE.2008.918703

    Article  Google Scholar 

  16. Alarcon-Rodriguez, A., Ault, G., Galloway, S.: Multi-objective planning of distributed energy resources: a review of the state-of-the-art. Renew. Sust. Energ. Rev. 14, 1353–1366 (2010). https://doi.org/10.1016/j.rser.2010.01.006

    Article  Google Scholar 

  17. Sarzynski, A., Larrieu, J., Shrimali, G.: The impact of state financial incentives on market deployment of solar technology. Energy Policy. 46, 550–557 (2012). https://doi.org/10.1016/j.enpol.2012.04.032

    Article  Google Scholar 

  18. Nikolakakis, T., Fthenakis, V.: The optimum mix of electricity from wind- and solar-sources in conventional power systems: evaluating the case for New York state. Energy Policy. 39, 6972–6980 (2011). https://doi.org/10.1016/j.enpol.2011.05.052

    Article  Google Scholar 

  19. Denholm, P., Hand, M.: Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy. 39, 1817–1830 (2011). https://doi.org/10.1016/j.enpol.2011.01.019

    Article  Google Scholar 

  20. Adli, H.K., Husin, K.A.K., Hanafiah, N.H.M., Remli, M.A., Ernawan, F., Wirawan, P.W.: Forecasting and analysis of solar power output from integrated solar energy and IoT system. In: 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), pp. 222–226. IEEE, Semarang (2021). https://doi.org/10.1109/ICICoS53627.2021.9651831

    Chapter  Google Scholar 

  21. Qing, X., Niu, Y.: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM. Energy. 148, 461–468 (2018). https://doi.org/10.1016/j.energy.2018.01.177

    Article  Google Scholar 

  22. Sivaneasan, B., Yu, C.Y., Goh, K.P.: Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia. 143, 727–732 (2017). https://doi.org/10.1016/j.egypro.2017.12.753

    Article  Google Scholar 

  23. Gutierrez-Corea, F.-V., Manso-Callejo, M.-A., Moreno-Regidor, M.-P., Manrique-Sancho, M.-T.: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Sol. Energy. 134, 119–131 (2016). https://doi.org/10.1016/j.solener.2016.04.020

    Article  Google Scholar 

  24. Abuella, M., Chowdhury, B.: Solar power forecasting using artificial neural networks. In: 2015 North American Power Symposium (NAPS), pp. 1–5. IEEE, Charlotte (2015). https://doi.org/10.1109/NAPS.2015.7335176

    Chapter  Google Scholar 

  25. Dahmani, K., Dizene, R., Notton, G., Paoli, C., Voyant, C., Nivet, M.L.: Estimation of 5-min time-step data of tilted solar global irradiation using ANN (artificial neural network) model. Energy. 70, 374–381 (2014). https://doi.org/10.1016/j.energy.2014.04.011

    Article  Google Scholar 

  26. Marquez, R., Pedro, H.T.C., Coimbra, C.F.M.: Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Sol. Energy. 92, 176–188 (2013). https://doi.org/10.1016/j.solener.2013.02.023

    Article  Google Scholar 

  27. Danish, M.S.S.: A framework for modeling and optimization of data-driven energy systems using machine learning. IEEE Trans. Artif. Intell.., 1–10 (2023). https://doi.org/10.1109/TAI.2023.3322395

  28. Danish, M.S.S., Elsayed, M.E.L., Ahmadi, M., Senjyu, T., Karimy, H., Zaheb, H.: A strategic-integrated approach for sustainable energy deployment. Energy Rep. 6, 40–44 (2020). https://doi.org/10.1016/j.egyr.2019.11.039

    Article  Google Scholar 

  29. Danish, M.S.S., Senjyu, T.: AI-enabled energy policy for a sustainable future. Sustain. For. 15, 7643 (2023). https://doi.org/10.3390/su15097643

    Article  Google Scholar 

  30. Danish, M.S.S., Yona, A., Senjyu, T.: Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan. J. Eng. IET. 2014, 438–444 (2014). https://doi.org/10.1049/joe.2014.0172

    Article  Google Scholar 

  31. Karatas, Y., Yilmaz, D.: Experimental investigation of the microclimate effects on floating solar power plant energy efficiency. Clean Techn. Environ. Policy. 23, 2157–2170 (2021). https://doi.org/10.1007/s10098-021-02122-y

    Article  Google Scholar 

  32. Zhong, Q., Nelson, J.R., Tong, D., Grubesic, T.H.: A spatial optimization approach to increase the accuracy of rooftop solar energy assessments. Appl. Energy. 316, 119128 (2022). https://doi.org/10.1016/j.apenergy.2022.119128

    Article  Google Scholar 

  33. Lee, S., Kim, J., Jang, D.: Analysis of major temporary electrical equipment consumption and usage patterns in educational buildings: case study. Sustain. For. 14, 10783 (2022). https://doi.org/10.3390/su141710783

    Article  Google Scholar 

  34. Niskanen, J., Rohracher, H.: A politics of calculation: negotiating pathways to zero-energy buildings in Sweden. Technol. Forecast. Soc. Chang. 179, 121630 (2022). https://doi.org/10.1016/j.techfore.2022.121630

    Article  Google Scholar 

  35. Das, B.K., Alotaibi, M.A., Das, P., Islam, M.S., Das, S.K., Hossain, M.A.: Feasibility and techno-economic analysis of stand-alone and grid-connected PV/wind/diesel/batt hybrid energy system: a case study. Energ. Strat. Rev. 37, 100673 (2021). https://doi.org/10.1016/j.esr.2021.100673

    Article  Google Scholar 

  36. Zander, K.K., Simpson, G., Mathew, S., Nepal, R., Garnett, S.T.: Preferences for and potential impacts of financial incentives to install residential rooftop solar photovoltaic systems in Australia. J. Clean. Prod. 230, 328–338 (2019). https://doi.org/10.1016/j.jclepro.2019.05.133

    Article  Google Scholar 

  37. Masili, M., Ventura, L.: Local tilt optimization of photovoltaic solar panels for maximum radiation absorption. Int. J. Photoenergy. 2019, e3254780 (2019). https://doi.org/10.1155/2019/3254780

    Article  Google Scholar 

  38. Stephens, G., Dieterle, C., Hossain, E., Bayindir, R.: Feasibility study of grid-connected solar plant: an in-depth analysis of system modeling and proper technology selection. Int. J. Electr. Eng. Educ. 60, 159–175 (2023). https://doi.org/10.1177/0020720920928543

    Article  Google Scholar 

  39. Madhu, M.C., Narayana, K.B., Kishore, J.K.: Hybrid DC-AC homes with roof top solar power. E3S Web Conf. 239, 00017 (2021). https://doi.org/10.1051/e3sconf/202123900017

    Article  Google Scholar 

  40. Aboagye, B., Gyamfi, S., Ofosu, E.A., Djordjevic, S.: Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sustain. Dev. 66, 165–176 (2022). https://doi.org/10.1016/j.esd.2021.12.003

    Article  Google Scholar 

  41. Alhawsawi, E.Y., Habbi, H.M.D., Hawsawi, M., Zohdy, M.A.: Optimal design and operation of hybrid renewable energy systems for Oakland University. Energies. 16, 5830 (2023). https://doi.org/10.3390/en16155830

    Article  Google Scholar 

  42. Wang, W., Tu, J., Xu, H., Qi, F., Tavasoli, M., Su, Z.: Tow-sectional optimized thermodinamical cycle using different renewable energies including geothermal and biogas to produce stable productions. Renew. Energy. 220, 119617 (2024). https://doi.org/10.1016/j.renene.2023.119617

    Article  Google Scholar 

  43. Garraín, D., Herrera, I., Rodríguez-Serrano, I., Lechón, Y., Hepbasli, A., Araz, M., Biyik, E., Yao, R., Shahrestani, M., Essah, E., Shao, L., Rico, E., Lechón, J.L., Oliveira, A.C.: Sustainability indicators of a naturally ventilated photovoltaic façade system. J. Clean. Prod. 266, 121946 (2020). https://doi.org/10.1016/j.jclepro.2020.121946

    Article  Google Scholar 

  44. Hernández-Callejo, L., Gallardo-Saavedra, S., Alonso-Gómez, V.: A review of photovoltaic systems: design, operation and maintenance. Sol. Energy. 188, 426–440 (2019). https://doi.org/10.1016/j.solener.2019.06.017

    Article  Google Scholar 

  45. Al-Najideen, M.I., Alrwashdeh, S.S.: Design of a solar photovoltaic system to cover the electricity demand for the faculty of engineering- Mu’tah University in Jordan. Resour. Effici. Technol. 3, 440–445 (2017). https://doi.org/10.1016/j.reffit.2017.04.005

    Article  Google Scholar 

  46. Moussa, I., Khedher, A.: Chapter 4 - an experimental test bench for emulating the standard characteristics of photovoltaic (PV) systems. In: Jeguirim, M. (ed.) Renewable Energy Production and Distribution, pp. 107–135. Academic Press (2022). https://doi.org/10.1016/B978-0-323-91892-3.00011-X

    Chapter  Google Scholar 

  47. Rawat, R., Kaushik, S.C., Lamba, R.: A review on modeling, design methodology and size optimization of photovoltaic based water pum**, standalone and grid connected system. Renew. Sust. Energ. Rev. 57, 1506–1519 (2016). https://doi.org/10.1016/j.rser.2015.12.228

    Article  Google Scholar 

  48. Oshiro, T., Nakamura, H., Imataki, M., Sakuta, K., Kurokawa, K.: Practical values of various parameters for PV system design. Sol. Energy Mater. Sol. Cells. 47, 177–187 (1997). https://doi.org/10.1016/S0927-0248(97)00038-X

    Article  Google Scholar 

  49. Iringová, A., Kovačic, M.: Design and optimization of photovoltaic systems in a parking garage – a case study. Trans. Res. Procedia. 55, 1171–1179 (2021). https://doi.org/10.1016/j.trpro.2021.07.097

    Article  Google Scholar 

  50. Ludin, G.A., Matayoshi, H., Danish, M.S.S., Yona, A., Senjyu, T.: Hybrid PV/wind/diesel based distributed generation for an off-grid rural village in Afghanistan. J. Energy Power Eng. 11, 85–94 (2017). https://doi.org/10.17265/1934-8975/2017.02.003

    Article  Google Scholar 

  51. Yaqobi, M.A., Matayoshi, H., Danish, M.S.S., Urasaki, N., Howlader, A.M., Senjyu, T.: Control and energy management strategy of standalone DC microgrid cluster using PV and battery storage for rural application. Int. J. Power Energy Res. 2, 53–68 (2018). https://doi.org/10.22606/ijper.2018.24001

    Article  Google Scholar 

  52. Indu Rani, B., Saravana Ilango, G., Nagamani, C.: Power flow management algorithm for photovoltaic systems feeding DC/AC loads. Renew. Energy. 43, 267–275 (2012). https://doi.org/10.1016/j.renene.2011.11.035

    Article  Google Scholar 

  53. Castro, L.M., Rodríguez-Rodríguez, J.R., Martin-del-Campo, C.: Modelling of PV systems as distributed energy resources for steady-state power flow studies. Int. J. Electr. Power Energy Syst. 115, 105505 (2020). https://doi.org/10.1016/j.ijepes.2019.105505

    Article  Google Scholar 

  54. Nazir, R., Kanada, K., Coveria, P.: Optimization active and reactive power flow for PV connected to grid system using Newton Raphson method. Energy Procedia. 68, 77–86 (2015). https://doi.org/10.1016/j.egypro.2015.03.235

    Article  Google Scholar 

  55. Singh, S.K., Lohani, B., Arora, L., Choudhary, D., Nagarajan, B.: A visual-inertial system to determine accurate solar insolation and optimal PV panel orientation at a point and over an area. Renew. Energy. 154, 223–238 (2020). https://doi.org/10.1016/j.renene.2020.02.107

    Article  Google Scholar 

  56. Mubaarak, S., Zhang, D., Wang, L., Mohan, M., Kumar, P.M., Li, C., Zhang, Y., Li, M.: Efficient photovoltaics-integrated hydrogen fuel cell-based hybrid system: energy management and optimal configuration. J. Renew. Sustain. Energy. 13, 013502 (2021). https://doi.org/10.1063/1.5141932

    Article  Google Scholar 

  57. Yuan, J., Yuan, W., Yuan, J., Liu, Z., Liao, J., Ou, X.: Policy recommendations for distributed solar PV aiming for a carbon-neutral future. Sustain. For. 15, 3005 (2023). https://doi.org/10.3390/su15043005

    Article  Google Scholar 

  58. Danish, M.S.S., Sabory, N.R., Danish, S.M.S., Ludin, G.A., Yona, A., Senjyu, T.: An open-door immature policy for rural electrification: a case study of Afghanistan. Int. J. Sustain. Green Energy. 6, 8–13 (2016). https://doi.org/10.11648/j.ijrse.s.2017060301.12

    Article  Google Scholar 

  59. Danish, S.M.S., Zaheb, H., Sabori, N.R., Karimy, H., Faiq, A.B., Fedayi, H., Senjyu, T.: The road ahead for municipal solid waste management in the 21st century: a novel-standardized simulated paradigm. In: IOP Conference Series: Earth and Environmental Science, p. 012009. IOP Publishing, Seoul (2019). https://doi.org/10.1088/1755-1315/291/1/012009

    Chapter  Google Scholar 

  60. Martínez Torres, J., Pastor Pérez, J., Sancho Val, J., McNabola, A., Martínez Comesaña, M., Gallagher, J.: A functional data analysis approach for the detection of air pollution episodes and outliers: a case study in Dublin, Ireland. Mathematics. 8, 225 (2020). https://doi.org/10.3390/math8020225

    Article  Google Scholar 

  61. Adalı, Z., Danish, M.S.S.: Investigation of the nexus between the electricity consumption and the ecological footprint. In: Dinçer, H., Yüksel, S. (eds.) Circular Economy and the Energy Market: Achieving Sustainable Economic Development Through Energy Policy, pp. 79–89. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-13146-2_7

    Chapter  Google Scholar 

  62. Danish, M.S.S., Senjyu, T., Urasaki, N., Rahmany, N.A., Ershad, A.M., Sabory, N.R., Zarabi, K., Anwarzai, M.A., Karimy, H., Zaheb, H.: Develo** nations as a foremost allotment for achieving 2030 SDGs – a case study. J. Eng. Technol. Revolut. 2, 1–10 (2021). https://doi.org/10.37357/1068/jetr.2.1.01

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Dinçer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dinçer, H., Ibrahimi, A.M., Ahmadi, M., Danish, M.S.S. (2024). A Blueprint for Sustainable Electrification by Designing and Implementing PV Systems in Small Scales. In: Danish, M.S.S. (eds) Unified Vision for a Sustainable Future. CEGS 2024. Springer, Cham. https://doi.org/10.1007/978-3-031-53574-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53574-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53573-4

  • Online ISBN: 978-3-031-53574-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation