Integrating Machine Learning into Energy Systems: A Techno-economic Framework for Enhancing Grid Efficiency and Reliability

  • Conference paper
  • First Online:
Unified Vision for a Sustainable Future (CEGS 2024)

Abstract

This study introduces a novel techno-economic framework integrating machine learning (ML) into energy systems to enhance their operational efficiency and reliability. With the increasing complexity and dynamic nature of modern energy grids, there is a pressing need for innovative solutions that ensure stability and adaptability. Our proposed framework leverages advanced ML algorithms to improve grid management, ranging from demand forecasting and renewable energy integration to real-time optimization and reliability assessment. Through a comprehensive analysis, we demonstrate the effectiveness of ML in accurately predicting energy patterns, optimizing resource allocation, and managing the grid in response to fluctuating demands. The results reveal that ML not only increases the precision of energy system models but also drives substantial improvements in both economic and environmental performance. The iterative development and validation process outlined confirms the potential of ML to transform energy systems into more responsive, efficient, and robust networks. As energy providers seek sustainable and cost-effective solutions, this framework marks a significant step toward a smarter energy future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, T., Andersson, G., Söder, L.: Distributed generation: a definition. Electr. Power Syst. Res. 57, 195–204 (2001). https://doi.org/10.1016/S0378-7796(01)00101-8

    Article  Google Scholar 

  2. Danish, M.S.S., Nazari, Z., Senjyu, T.: AI-coherent data-driven forecasting model for a combined cycle power plant. Energy Convers. Manag. 286, 117063 (2023). https://doi.org/10.1016/j.enconman.2023.117063

    Article  Google Scholar 

  3. Al-Najideen, M.I., Alrwashdeh, S.S.: Design of a solar photovoltaic system to cover the electricity demand for the faculty of engineering- Mu’tah University in Jordan. Resour.-Effic. Technol. 3, 440–445 (2017). https://doi.org/10.1016/j.reffit.2017.04.005

    Article  Google Scholar 

  4. Furukakoi, M., Sediqi, M.M., Senjyu, T., Danish, M.S.S., Howlader, A.M., Hassan, M.A.M., Funabashi, T.: Optimum capacity of energy storage system considering solar radiation forecast error and demand response. In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 – ECCE Asia), pp. 997–1001. IEEE, Kaohsiung (2017). https://doi.org/10.1109/IFEEC.2017.7992177

    Chapter  Google Scholar 

  5. Danish, M.S.S., Senjyu, T.S.: Green building efficiency and sustainability indicators. In: Green Building Management and Smart Automation, pp. 128–145. IGI Global, Hershey (2020). https://doi.org/10.4018/978-1-5225-9754-4.ch006

    Chapter  Google Scholar 

  6. Danish, M.S.S., Zaheb, H., Sabory, N.R., Tomonobu, S., Ahmadi, M., Sadat, S.H.: Empowering Develo** Nations and Sustainable Development: Case Studies and Synthesis. REPA – Research and Education Promotion Association, Japan (2020)

    Book  Google Scholar 

  7. Danish, M.S.S., Senjyu, T.S.: System of green resilience eco-oriented land uses in urban socio-ecosystems. In: Eco-Friendly Energy Processes and Technologies for Achieving Sustainable Development, pp. 1–23. IGI Global, Hershey (2021). https://doi.org/10.4018/978-1-7998-4915-5

    Chapter  Google Scholar 

  8. Ahmadi, M., Adewuyi, O.B., Danish, M.S.S., Mandal, P., Yona, A., Senjyu, T.: Optimum coordination of centralized and distributed renewable power generation incorporating battery storage system into the electric distribution network. Int. J. Electr. Power Energy Syst. 125, 106458 (2021). https://doi.org/10.1016/j.ijepes.2020.106458

    Article  Google Scholar 

  9. Danish, M.S.S.: A framework for modeling and optimization of data-driven energy systems using machine learning. IEEE Trans. Artif. Intell. 1–10 (2023). https://doi.org/10.1109/TAI.2023.3322395

  10. Danish, M.S.S.: AI and expert insights for sustainable energy future. Energies. 16, 3309 (2023). https://doi.org/10.3390/en16083309

    Article  Google Scholar 

  11. Danish, M.S.S., Bhattacharya, A., Stepanova, D., Mikhaylov, A., Grilli, M.L., Khosravy, M., Senjyu, T.: A systematic review of metal oxide applications for energy and environmental sustainability. Metals. 10, 1604 (2020). https://doi.org/10.3390/met10121604

    Article  Google Scholar 

  12. Danish, M.S.S., Senjyu, T.: AI-enabled energy policy for a sustainable future. Sustain. For. 15, 7643 (2023). https://doi.org/10.3390/su15097643

    Article  Google Scholar 

  13. Danish, M.S.S., Elsayed, M.E.L., Ahmadi, M., Senjyu, T., Karimy, H., Zaheb, H.: A strategic-integrated approach for sustainable energy deployment. Energy Rep. 6, 40–44 (2020). https://doi.org/10.1016/j.egyr.2019.11.039

    Article  Google Scholar 

  14. Danish, M.S.S., Senjyu, T.: Sha** the future of sustainable energy through AI-enabled circular economy policies. Circ. Econ. 2, 100040 (2023). https://doi.org/10.1016/j.cec.2023.100040

    Article  Google Scholar 

  15. Danish, M.S.S., Senjyu, T., Danish, S.M.S., Sabory, N.R., Narayanan, K., Mandal, P.: A recap of voltage stability indices in the past three decades. Energies. 12, 1544 (2019). https://doi.org/10.3390/en12081544

    Article  Google Scholar 

  16. Danish, M.S.S., Senjyu, T., Faisal, N., Stannikzai, M.Z., Nazari, A.M., Vargas-Hernández, J.G.: A review on environmental-friendly energy multidisciplinary exposition from goals to action. J. Environ. Sci. Revolut. 2, 1–9 (2021). https://doi.org/10.37357/1068/jesr.2.1.01

    Article  Google Scholar 

  17. Danish, M.S.S., Senjyu, T., Funabashia, T., Ahmadi, M., Ibrahimi, A.M., Ohta, R., Rashid Howlader, H.O., Zaheb, H., Sabory, N.R., Sediqi, M.M.: A sustainable microgrid: a sustainability and management-oriented approach. Energy Procedia. 159, 160–167 (2019). https://doi.org/10.1016/j.egypro.2018.12.045

    Article  Google Scholar 

  18. Danish, M.S.S., Senjyu, T., Ibrahimi, A.M., Ahmadi, M., Howlader, A.M.: A managed framework for energy-efficient building. J. Build. Eng. 21, 120–128 (2019). https://doi.org/10.1016/j.jobe.2018.10.013

    Article  Google Scholar 

  19. Danish, M.S.S., Senjyu, T., Ibrahimi, A.M., Bhattacharya, A., Nazari, Z., Danish, S.M.S., Ahmadi, M.: Sustaining energy systems using metal oxide composites as photocatalysts. J. Sustain. Energy Revolut. 2(6–15), 6 (2021). https://doi.org/10.37357/1068/jser.2.1.02

    Article  Google Scholar 

  20. Danish, M.S.S., Senjyu, T., Nazari, M., Zaheb, H., Nassor, T.S., Danish, S.M.S., Karimy, H.: Smart and sustainable building appraisal. J. Sustain. Energy Revolut. 2, 1–5 (2021). https://doi.org/10.37357/1068/jser.2.1.01

    Article  Google Scholar 

  21. Danish, M.S.S., Senjyu, T., Zaheb, H., Sabory, N.R., Ibrahimi, A.M., Matayoshi, H.: A novel transdisciplinary paradigm for municipal solid waste to energy. J. Clean. Prod. 233, 880–892 (2019). https://doi.org/10.1016/j.jclepro.2019.05.402

    Article  Google Scholar 

  22. Danish, M.S.S., Yona, A., Senjyu, T.: Pre-design and life cycle cost analysis of a hybrid power system for rural and remote communities in Afghanistan. J. Eng. IET. 2014, 438–444 (2014). https://doi.org/10.1049/joe.2014.0172

    Article  Google Scholar 

  23. Furukakoi, M., Danish, M.S.S., Howlader, A.M., Senjyu, T.: Voltage stability improvement of transmission systems using a novel shunt capacitor control. Int. J. Emerg. Electr. Power Syst. 19, 1–12 (2018). https://doi.org/10.1515/ijeeps-2017-0112

    Article  Google Scholar 

  24. Ibrahimi, A.M., Howlader, H.O.R., Danish, M.S.S., Shigenobu, R., Sediqi, M.M., Senjyu, T.: Optimal unit commitment with concentrated solar power and thermal energy storage in Afghanistan electrical system. Int. J. Emerg. Electr. Power Syst. 20 (2019). https://doi.org/10.1515/ijeeps-2018-0264

  25. Ibrahimi, A.M., Sediqi, M.M., Howlader, H.O.R., Danish, M.S.S., Chakraborty, S., Senjyu, T.: Generation expansion planning considering renewable energy integration and optimal unit commitment: a case study of Afghanistan. AIMS Energy. 7, 441–464 (2019). https://doi.org/10.3934/energy.2019.4.441

    Article  Google Scholar 

  26. Danish, M.S.S., Senjyu, T., Ahmadi, M., Ludin, G.A., Ahadi, M.H., Karimy, H., Khosravy, M.: A review on energy efficiency for pathetic environmental trends mitigation. J. Sustain. Outreach. 2, 1–8 (2021). https://doi.org/10.37357/1068/jso.2.1.01

    Article  Google Scholar 

  27. Kräuchi, P., Dahinden, C., Jurt, D., Wouters, V., Menti, U.-P., Steiger, O.: Electricity consumption of building automation. Energy Procedia. 122, 295–300 (2017). https://doi.org/10.1016/j.egypro.2017.07.325

    Article  Google Scholar 

  28. Karagiannopoulos, S., Dobbe, R., Aristidou, P., Callaway, D., Hug, G.: Data-driven control design schemes in active distribution grids: capabilities and challenges. In: 2019 IEEE Milan PowerTech, pp. 1–6 (2019). https://doi.org/10.1109/PTC.2019.8810586

  29. Hernández-Callejo, L., Gallardo-Saavedra, S., Alonso-Gómez, V.: A review of photovoltaic systems: design, operation and maintenance. Sol. Energy. 188, 426–440 (2019). https://doi.org/10.1016/j.solener.2019.06.017

    Article  Google Scholar 

  30. Furukakoi, M., Adewuyi, O.B., Danish, M.S.S., Howlader, A.M., Senjyu, T., Funabashi, T.: Critical boundary index (CBI) based on active and reactive power deviations. Int. J. Electr. Power Energy Syst. 100, 50–57 (2018). https://doi.org/10.1016/j.ijepes.2018.02.010

    Article  Google Scholar 

  31. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M.D.: A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew. Sust. Energ. Rev. 124, 109792 (2020). https://doi.org/10.1016/j.rser.2020.109792

    Article  Google Scholar 

  32. Shams, S., Danish, M.S.S., Sabory, N.R.: Solar energy market and policy instrument analysis to support sustainable development. In: Danish, M.S.S., Senjyu, T., Sabory, N.R. (eds.) Sustainability Outreach in Develo** Countries, pp. 113–132. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7179-4_8

    Chapter  Google Scholar 

  33. Sward, J.A., Siff, J., Gu, J., Zhang, K.M.: Strategic planning for utility-scale solar photovoltaic development – historical peak events revisited. Appl. Energy. 250, 1292–1301 (2019). https://doi.org/10.1016/j.apenergy.2019.04.178

    Article  Google Scholar 

  34. Nazim, S.F., Danish, M.S.S., Senjyu, T.: A brief review of the future of smart mobility using 5G and IoT. J. Sustain. Outreach. 19–30, 10.37357/1068/jso/3.1.02 (2022)

    Google Scholar 

  35. Brenna, M., Falvo, M.C., Foiadelli, F., Martirano, L., Poli, D.: Sustainable energy microsystem (SEM): preliminary energy analysis. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–6. IEEE, Washington (2012). https://doi.org/10.1109/ISGT.2012.6175735

    Chapter  Google Scholar 

  36. Berizzi, A., Finazzi, P.: First and second order methods for voltage collapse assessment and security enhancement. IEEE Trans. Power Syst. 13, 543–551 (1998). https://doi.org/10.1109/59.667380

    Article  Google Scholar 

  37. Gao, B., Morison, G.K., Kundur, P.: Voltage stability evaluation using modal analysis. IEEE Trans. Power Syst. 7, 1529–1542 (1992). https://doi.org/10.1109/59.207377

    Article  Google Scholar 

  38. Danish, M.S.S.: AI in energy: overcoming unforeseen obstacles. AI. 4, 406–425 (2023). https://doi.org/10.3390/ai4020022

    Article  Google Scholar 

  39. Abdolrasol, M.G.M., Hussain, S.M.S., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mohamed, R., Ali, J.A., Mekhilef, S., Milad, A.: Artificial neural networks based optimization techniques: a review. Electronics. 10, 2689 (2021). https://doi.org/10.3390/electronics10212689

    Article  Google Scholar 

  40. Danish, M.S.S., Sabory, N.R., Ibrahimi, A.M., Senjyu, T., Ahadi, M.H., Stanikzai, M.Z.: A concise overview of energy development within sustainability requirements. In: Danish, M.S.S., Senjyu, T., Sabory, N.R. (eds.) Sustainability Outreach in Develo** Countries, pp. 15–27. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7179-4_2

    Chapter  Google Scholar 

  41. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  42. Gutierrez-Corea, F.-V., Manso-Callejo, M.-A., Moreno-Regidor, M.-P., Manrique-Sancho, M.-T.: Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations. Sol. Energy. 134, 119–131 (2016). https://doi.org/10.1016/j.solener.2016.04.020

    Article  Google Scholar 

  43. Sufizada, Z., Oryakheill, A.A., Kohnaward, M.H., Fazli, N., Zadran, H., Sabory, N.R., Danish, M.S.S.: From consumers to producers: energy efficiency as a tool for sustainable development in the context of informal settlements. In: Danish, M.S.S., Senjyu, T., Sabory, N.R. (eds.) Sustainability Outreach in Develo** Countries, pp. 169–187. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7179-4_11

    Chapter  Google Scholar 

  44. Senjyu, T., Takara, H., Uezato, K., Funabashi, T.: One-hour-ahead load forecasting using neural network. IEEE Trans. Power Syst. 17, 113–118 (2002). https://doi.org/10.1109/59.982201

    Article  Google Scholar 

  45. Bhattacharyya, S.C.: Energy Economics: Concepts, Issues, Markets and Governance. Springer, London (2019)

    Book  Google Scholar 

  46. Brahma, S., Kavasseri, R., Cao, H., Chaudhuri, N.R., Alexopoulos, T., Cui, Y.: Real-time identification of dynamic events in power systems using PMU data, and potential applications – models, promises, and challenges. IEEE Trans. Power Deliv. 32, 294–301 (2017). https://doi.org/10.1109/TPWRD.2016.2590961

    Article  Google Scholar 

  47. Khalid, H.M., Flitti, F., Mahmoud, M.S., Hamdan, M.M., Muyeen, S.M., Dong, Z.Y.: Wide area monitoring system operations in modern power grids: a median regression function-based state estimation approach towards cyber attacks. Sustain. Energy Grids Netw. 34, 101009 (2023). https://doi.org/10.1016/j.segan.2023.101009

    Article  Google Scholar 

  48. Danish, M.S.S., Senjyu, T. (eds.): Eco-Friendly and Agile Energy Strategies and Policy Development. IGI Global, Hershey (2022)

    Google Scholar 

  49. Danish, M.S.S.: Voltage Stability in Electric Power System: a Practical Introduction. Logos Verlag Berlin GmbH, Berlin (2015)

    Google Scholar 

  50. Blackouts, P.W.: A three-stage procedure for controlled islanding to prevent wide-area blackouts. Energies. 11, 1–15 (2018). https://doi.org/10.3390/en11113066

    Article  Google Scholar 

  51. Danish, M.S.S., Yona, A., Senjyu, T.: A review of voltage stability assessment techniques with an improved voltage stability indicator. Int. J. Emerg. Electr. Power Syst. 16, 107–115 (2015). https://doi.org/10.1515/ijeeps-2014-0167

    Article  Google Scholar 

  52. Danish, S.M.S., Ahmadi, M., Danish, M.S.S., Mandal, P., Yona, A., Senjyu, T.: A coherent strategy for peak load shaving using energy storage systems. J. Energy Storage. 32, 101823 (2020). https://doi.org/10.1016/j.est.2020.101823

    Article  Google Scholar 

  53. Ahmadi, M., Danish, M.S.S., Lotfy, M.E., Yona, A., Hong, Y.-Y., Senjyu, T.: Multi-objective time-variant optimum automatic and fixed type of capacitor bank allocation considering minimization of switching steps. AIMS Energy. 7, 792 (2019). https://doi.org/10.3934/energy.2019.6.792

    Article  Google Scholar 

  54. Danish, S.M.S., Shigenobu, R., Kinjo, M., Mandal, P., Krishna, N., Hemeida, A.M., Senjyu, T.: A real distribution network voltage regulation incorporating auto-tap-changer pole transformer multiobjective optimization. Appl. Sci. 9, 2813 (2019). https://doi.org/10.3390/app9142813

    Article  Google Scholar 

  55. Danish, M.S.S., Sabory, N.R., Funabashi, T., Danish, S.M.S., Noorzad, A.S., Yona, A., Senjyu, T.: Comparative analysis of load flow calculation methods with considering the voltage stability constraints. In: 2016 IEEE International Conference on Power and Energy (PECon), pp. 250–255. IEEE, Melaka (2016). https://doi.org/10.1109/PECON.2016.7951568

    Chapter  Google Scholar 

  56. Yang, H., Wen, F., Wang, L.: Newton-Raphson on power flow algorithm and Broyden method in the distribution system. In: 2008 IEEE 2nd International Power and Energy Conference, pp. 1613–1618 (2008), https://doi.org/10.1109/PECON.2008.4762737

  57. Sagara, M., Shigenobu, R., Adewuyi, O.B., Yona, A., Senjyu, T., Danish, M.S.S., Funabashi, T.: Voltage stability improvement by demand response. In: TENCON 2017–2017 IEEE Region 10 Conference, pp. 2144–2149. IEEE, Penang (2017). https://doi.org/10.1109/TENCON.2017.8228215

    Chapter  Google Scholar 

  58. Glavic, M., Fonteneau, R., Ernst, D.: Reinforcement learning for electric power system decision and control: past considerations and perspectives. IFAC-Pap. 50, 6918–6927 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1217

    Article  Google Scholar 

  59. Razmjoo, A.A., Sumper, A., Davarpanah, A.: Energy sustainability analysis based on SDGs for develo** countries. Energy Sources Part Recovery Util. Environ. Eff. 42, 1041–1056 (2020). https://doi.org/10.1080/15567036.2019.1602215

    Article  Google Scholar 

  60. Agajie, T.F., Ali, A., Fopah-Lele, A., Amoussou, I., Khan, B., Velasco, C.L.R., Tanyi, E.: A comprehensive review on techno-economic analysis and optimal sizing of hybrid renewable energy sources with energy storage systems. Energies. 16, 642 (2023). https://doi.org/10.3390/en16020642

    Article  Google Scholar 

  61. Mirbarati, S.H., Heidari, N., Nikoofard, A., Danish, M.S.S., Khosravy, M.: Techno-economic-environmental energy Management of a Micro-Grid: a mixed-integer linear programming approach. Sustain. For. 14, 15036 (2022). https://doi.org/10.3390/su142215036

    Article  Google Scholar 

  62. Lu, R., Hong, S.H.: Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl. Energy. 236, 937–949 (2019). https://doi.org/10.1016/j.apenergy.2018.12.061

    Article  Google Scholar 

  63. Danish, M.S.S.: Exploring metal oxides for hydrogen evolution reaction (HER) in the field of nanotechnology. RSC Sustain. 1, 2180 (2023). https://doi.org/10.1039/D3SU00179B

    Article  Google Scholar 

  64. Gorjian, S., Calise, F., Kant, K., Ahamed, M.S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M., Shamshiri, R.R.: A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. J. Clean. Prod. 285, 124807 (2021). https://doi.org/10.1016/j.jclepro.2020.124807

    Article  Google Scholar 

  65. Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., Verbruggen, A.: Sustainability assessment and indicators: tools in a decision-making strategy for sustainable development. Sustain. For. 6, 5512–5534 (2014). https://doi.org/10.3390/su6095512

    Article  Google Scholar 

  66. Adalı, Z., Danish, M.S.S.: Investigation of the nexus between the electricity consumption and the ecological footprint. In: Dinçer, H., Yüksel, S. (eds.) Circular Economy and the Energy Market: Achieving Sustainable Economic Development Through Energy Policy, pp. 79–89. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-13146-2_7

    Chapter  Google Scholar 

  67. Ohno, T., Imai, S.: The 1987 Tokyo blackout. In: 2006 IEEE PES Power Systems Conference and Exposition, pp. 314–318. IEEE (2006). https://doi.org/10.1109/PSCE.2006.296325

    Chapter  Google Scholar 

  68. Nimpitiwan, N., Heydt, G.T., Ayyanar, R., Suryanarayanan, S.: Fault current contribution from synchronous machine and inverter based distributed generators. IEEE Trans. Power Deliv. 22, 634–641 (2007). https://doi.org/10.1109/TPWRD.2006.881440

    Article  Google Scholar 

  69. Castrillón-Mendoza, R., Rey-Hernández, J.M., Rey-Martínez, F.J.: Industrial decarbonization by a new energy-baseline methodology. Case Study. Sustain. 12, 1960 (2020). https://doi.org/10.3390/su12051960

    Article  Google Scholar 

  70. Danish, M.S.S., Senjyu, T., Sabory, N.R., Danish, S.M.S., Ludin, G.A., Noorzad, A.S., Yona, A.: Afghanistan’s aspirations for energy independence: water resources and hydropower energy. Renew. Energy. 113, 1276–1287 (2017). https://doi.org/10.1016/j.renene.2017.06.090

    Article  Google Scholar 

  71. Driesen, J., Katiraei, F.: Design for distributed energy resources. IEEE Power Energy Mag. 6, 30–40 (2008). https://doi.org/10.1109/MPE.2008.918703

    Article  Google Scholar 

  72. Kumar, R., Ojha, K., Ahmadi, M.H., Raj, R., Aliehyaei, M., Ahmadi, A., Nabipour, N.: A review status on alternative arrangements of power generation energy resources and reserve in India. Int. J. Low-Carbon Technol. 15, 224–240 (2020). https://doi.org/10.1093/ijlct/ctz066

    Article  Google Scholar 

  73. Duan, C., Jiang, L., Fang, W., Liu, J.: Data-driven Affinely adjustable distributionally robust unit commitment. IEEE Trans. Power Syst. 33, 1385–1398 (2018). https://doi.org/10.1109/TPWRS.2017.2741506

    Article  Google Scholar 

  74. Tong, W., Mu, D., Zhao, F., Mendis, G.P., Sutherland, J.W.: The impact of cap-and-trade mechanism and consumers’ environmental preferences on a retailer-led supply chain. Resour. Conserv. Recycl. 142, 88–100 (2019). https://doi.org/10.1016/j.resconrec.2018.11.005

    Article  Google Scholar 

  75. Ahmadi, M., Lotfy, M.E., Howlader, A.M., Yona, A., Senjyu, T.: Centralised multi-objective integration of wind farm and battery energy storage system in real-distribution network considering environmental, technical and economic perspective. Transm. Distrib. IET Gener. 13, 5207–5217 (2019). https://doi.org/10.1049/iet-gtd.2018.6749

    Article  Google Scholar 

  76. El-Moursi, M.S., Sharaf, A.M.: Novel controllers for the 48-pulse VSC STATCOM and SSSC for voltage regulation and reactive power compensation. IEEE Trans. Power Syst. 20, 1985–1997 (2005). https://doi.org/10.1109/TPWRS.2005.856996

    Article  Google Scholar 

  77. Kurita, A., Sakuraj, T.: The power system failure on July 23, 1987 in Tokyo. In: Proceedings of the 27th IEEE Conference on Decision and Control, pp. 2093–2097. IEEE, Austin (1988). https://doi.org/10.1109/CDC.1988.194703

    Chapter  Google Scholar 

  78. Aboagye, B., Gyamfi, S., Ofosu, E.A., Djordjevic, S.: Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems. Energy Sustain. Dev. 66, 165–176 (2022). https://doi.org/10.1016/j.esd.2021.12.003

    Article  Google Scholar 

  79. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning: Adaptive Computation and Machine Learning Series. The MIT Press, Cambridge (2016)

    Google Scholar 

  80. Ahmadi, M., Lotfy, M.E., Shigenobu, R., Howlader, A.M., Senjyu, T.: Optimal sizing of multiple renewable energy resources and PV inverter reactive power control encompassing environmental, technical, and economic issues. IEEE Syst. J. 13, 3026–3037 (2019). https://doi.org/10.1109/JSYST.2019.2918185

    Article  Google Scholar 

  81. Fulginei, F.R., Salvini, A., Parodi, M.: Learning optimization of neural networks used for MIMO applications based on multivariate functions decomposition. Inverse Probl. Sci. Eng. 20, 29–39 (2012). https://doi.org/10.1080/17415977.2011.629047

    Article  MathSciNet  Google Scholar 

  82. Runge, J., Zmeureanu, R.: Forecasting energy use in buildings using artificial neural networks: a review. Energies. 12, 3254 (2019). https://doi.org/10.3390/en12173254

    Article  Google Scholar 

  83. Kessel, P., Glavitsch, H.: Estimating the voltage stability of a power system. IEEE Trans. Power Deliv. 1, 346–354 (1986). https://doi.org/10.1109/TPWRD.1986.4308013

    Article  Google Scholar 

  84. Wang, J.-J., **g, Y.-Y., Zhang, C.-F., Zhao, J.-H.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sust. Energ. Rev. 13, 2263–2278 (2009). https://doi.org/10.1016/j.rser.2009.06.021

    Article  Google Scholar 

  85. Cheng, C., Liu, B., Chau, K.-W., Li, G., Liao, S.: China’s small hydropower and its dispatching management. Renew. Sust. Energ. Rev. 42, 43–55 (2015). https://doi.org/10.1016/j.rser.2014.09.044

    Article  Google Scholar 

  86. Berizzi, A., Marannino, P., Merlo, M., Pozzi, M., Zanellini, F.: Steady-state and dynamic approaches for the evaluation of loadability margins in the presence of secondary voltage regulation. IEEE Trans. Power Syst. 19, 1048–1057 (2004). https://doi.org/10.1109/TPWRS.2004.825869

    Article  Google Scholar 

  87. Bourdeau, M., Zhai, X., qiang Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: a review of data-driven techniques. Sustain. Cities Soc. 48, 101533 (2019). https://doi.org/10.1016/j.scs.2019.101533

    Article  Google Scholar 

  88. Adli, H.K., Husin, K.A.K., Hanafiah, N.H.M., Remli, M.A., Ernawan, F., Wirawan, P.W.: Forecasting and analysis of solar power output from integrated solar energy and IoT system. In: 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), pp. 222–226. IEEE, Semarang (2021). https://doi.org/10.1109/ICICoS53627.2021.9651831

    Chapter  Google Scholar 

  89. Wu, D., Wang, Y., Li, L., Lu, P., Liu, S., Dai, C., Pan, Y., Zhang, Z., Lin, Z., Yang, L.: Demand response ability evaluation based on seasonal and trend decomposition using LOESS and S–G filtering algorithms. Energy Rep. 8, 292–299 (2022). https://doi.org/10.1016/j.egyr.2022.02.139

    Article  Google Scholar 

  90. Danish, M.S.S., Matayoshi, H., Howlader, H.O.R., Chakraborty, S., Mandal, P., Senjyu, T.: Microgrid planning and design: resilience to sustainability. In: 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pp. 253–258. IEEE, Bangkok (2019). https://doi.org/10.1109/GTDAsia.2019.8716010

    Chapter  Google Scholar 

  91. Susowake, Y., Ibrahimi, A.M., Danish, M.S.S., Senjyu, T., Howlader, A.M., Mandal, P.: Multi-objective design of power system introducing seawater electrolysis plant for remote Island. In: 2018 IEEE Innovative Smart Grid Technologies – Asia (ISGT Asia), pp. 909–911. IEEE, Singapore (2018). https://doi.org/10.1109/ISGT-Asia.2018.8467912

    Chapter  Google Scholar 

  92. Sabory, N.R., Senjyu, T., Danish, M.S.S., Ahmadi, M., Zaheb, H., Halim, M.: A framework for integration of smart and sustainable energy systems in urban planning processes of low-income develo** countries: Afghanistan case. Sustain. For. 13, 8428 (2021). https://doi.org/10.3390/su13158428

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hamid Ahadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahadi, M.H. (2024). Integrating Machine Learning into Energy Systems: A Techno-economic Framework for Enhancing Grid Efficiency and Reliability. In: Danish, M.S.S. (eds) Unified Vision for a Sustainable Future. CEGS 2024. Springer, Cham. https://doi.org/10.1007/978-3-031-53574-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53574-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53573-4

  • Online ISBN: 978-3-031-53574-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation