Abstract

Control of plant-parasitic nematodes (PPNs) has become a complex problem because of their potential for damage and the lack of chemical nematicides as most of the chemical nematicides are banned due to health and environmental concerns. Therefore, there is an urgent need for low-cost, environmentally benign, and non-target organism-safe alternatives. Soil-dwelling microorganisms, notably bacteria and fungi, include natural antagonists of plant parasitic nematodes that can be exploited as a primary input for an integrated nematode control approach. In addition to direct antagonism, biological control agents (BCAs) produces several secondary metabolites that can potentially act as nematicides. This chapter reviews some secondary metabolites produced by these microorganisms and their mode of action against plant parasitic nematodes. Additionally, we have also reviewed the information on nematicidal metabolites from entomopathogenic nematodes. The information in the current chapter can be used to develop future bio-based solutions for managing PPNs in organic agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aballay, E., Prodan, S., Zamorano, A., & Castaneda-Alvarez, C. (2017). Nematicidal effect of rhizobacteria on plant-parasitic nematodes associated with vineyards. World Journal of Microbiology and Biotechnology, 33, 1–14.

    Article  Google Scholar 

  • Abbasi, M. W., Ahmed, N., Zaki, M. J., Shuakat, S. S., & Khan, D. (2014). Potential of Bacillus species against Meloidogyne javanica parasitising eggplant (Solanum melongena L.) and induced biochemical changes. Plant and Soil, 375, 159–173.

    Article  CAS  Google Scholar 

  • Abdel-Salam, M. S., Ameen, H. H., Soliman, G. M., Elkelany, U. S., & Asar, A. M. (2018). Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egyptian Journal of Biological Pest Control, 28, 1–6.

    Article  Google Scholar 

  • Agbodjato, N. A., Noumavo, P. A., Baba-Moussa, F., Salami, H. A., Sina, H., et al. (2015). Characterisation of potential plant growth promoting rhizobacteria isolated from Maize (Zea mays L.) in central and Northern Benin (West Africa). Applied and Environmental Soil Science, 901656. https://doi.org/10.1155/2015/901656

  • Ahmed, S., Liu, Q., & Jian, H. (2018). Biocontrol potential of Bacillus isolates against cereal cyst nematode (Heterodera avenae). Pakistan Journal of Nematology, 36, 163–176.

    Article  Google Scholar 

  • Antil, S., Kumar, R., Pathak, D. V., & Kumari, A. (2023). Recent advances in utilising bacteria as biocontrol agents against plant parasitic nematodes emphasising Meloidogyne spp. Biological Control, 183, 105244. https://doi.org/10.1016/j.biocontrol.2023.105244

    Article  CAS  Google Scholar 

  • Antoun, H. (2013). Plant-growth-promoting rhizobacteria. In Brenner’s encyclopaedia of genetics (Vol. 5, 2nd ed., pp. 353–355). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01169-4

    Chapter  Google Scholar 

  • Balakumaran, M., Ramya, R. S., Mhatre, P. H., Tadigiri, S., Chavan, S., & Thorat, Y. (2018). Fungal secondary metabolites: The potential eco-safe pesticides for plant protection. Biomolecule Reports, 11, 1–9.

    Google Scholar 

  • Bird, A. F., & Bird, J. (1991). The egg. In The structure of nematodes (2nd ed., pp. 7–43). Elsevier.

    Chapter  Google Scholar 

  • Blumer, C., & Haas, D. (2000). Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Achieves of Microbiology, 173, 170–177.

    CAS  Google Scholar 

  • Bogner, C. W., Kamdem, R. S., Sichtermann, G., Matthäus, C., Hölscher, D., et al. (2017). Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microbial Biotechnology, 10, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Carbonero, F., Benefiel, A. C., Alizadeh-Ghamsari, A. H., & Gaskin, H. R. (2012). Microbial pathways in colonic sulfur metabolism and links with health and disease. Frontiers in Physiology, 3, 448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castaneda-Alvarez, C., & Aballay, E. (2016). Rhizobacteria with nematicide aptitude: Enzymes and compounds associated. World Journal of Microbiology and Biotechnology, 32, 1–7.

    Article  CAS  Google Scholar 

  • Castaneda-Alvarez, C., Prodan, S., Rosales, I. M., & Aballay, E. (2016). Exoenzymes and metabolites related to the nematicidal effect of rhizobacteria on **phinema index Thorne Allen. Journal of Applied Microbiology, 120, 413–424.

    Article  CAS  PubMed  Google Scholar 

  • Chavan, S. N., Somasekhar, N., Thorat, Y. E., Thube, S. H., & Mhatre, P. H. (2019). Entomopathogenic nematodes: A green strategy for management of insect pests of crops. Advances in Agricultural EntoMology, 4, 127–157.

    Google Scholar 

  • Chen, L., Jiang, H., Cheng, Q., Chen, J., Wu, G., et al. (2015). Enhanced nematicidal potential of the chitinase pachi from Pseudomonas aeruginosa in association with Cry21Aa. Scientific Reports, 5, 14395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretoiu, M. S., Korthals, G. W., Visser, J. H., & van Elsas, J. D. (2013). Chitin amendment increases soil suppressiveness toward plant pathogens and modulates the actinobacterial and oxalobacteraceal communities in an experimental agricultural field. Applied and Environmental Microbiology, 79, 5291–5301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin, D., Moenne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N., & O’gara, F. (1997). Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Applied and Environmental Microbiology, 63, 1357–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis, R. H. C., Jones, J. T., Davies, K. G., Sharon, E., & Spiegel, Y. (2011). Plant nematode surfaces. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes: Progress in biological control (Vol. 11, pp. 115–144). Springer. https://doi.org/10.1007/978-1-4020-9648-8_5

    Chapter  Google Scholar 

  • Degenkolb, T., & Vilcinskas, A. (2016). Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: Metabolites from nematophagous ascomycetes. Applied Microbiology and Biotechnology, 100, 3799–3812.

    Article  CAS  PubMed  Google Scholar 

  • Demain, A. L., & Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1–39.

    Article  CAS  PubMed  Google Scholar 

  • Dihingia, S., Das, D., & Bora, S. (2017). Effect of microbial secretion on inhibitory effect of phytonematode: A review. International Journal of Information Research and Review, 4, 4275–4280.

    Google Scholar 

  • Djian, C., Pijarowski, L., Ponchet, M., Arpin, N., & Favre-Bonvin, J. (1991). Acetic acid: A selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica, 37, 101–112.

    Article  Google Scholar 

  • Dukare, A., Mhatre, P., Maheshwari, H. S., Bagul, S., Manjunatha, B. S., Khade, Y., & Kamble, U. (2022). Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech, 12, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Hadad, M. E., Mustafa, M. I., Selim, S. M., Mahgoob, A. E., El-Tayeb, T. S., & Abdel Aziz, N. H. (2010). In vitro evaluation of some bacterial isolates as biofertilisers and biocontrol agents against the second stage juveniles of Meloidogyne incognita. World Journal of Microbiology and Biotechnology, 26, 2249–2256.

    Article  Google Scholar 

  • Evans, R. H., Jr., Ellestad, G. A., & Kunstmann, M. P. (1969). Two new metabolites from an unidentified Nigrospora species. Tetrahedron Letters, 10, 1791–1794.

    Article  Google Scholar 

  • Fox, E. M., & Howlett, B. J. (2008). Secondary metabolism: Regulation and role in fungal biology. Current Opinon in Microbiology, 11, 481–487.

    Article  CAS  Google Scholar 

  • Frankenhuyzen, K. (2009). Insecticidal activity of Bacillus thuringiensis crystal proteins. Journal of Invertebrate Pathology, 101, 1–16.

    Article  PubMed  Google Scholar 

  • Gallagher, L. A., & Manoil, C. (2001). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. Journal of Bacteriology, 183, 6207–6214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galper, S., Cohn, E., & Chet, I. (1990). Nematicidal effect of collagen amended soil and the influence of protease and collagenase. Revue de Nématologie, 13, 67–71.

    CAS  Google Scholar 

  • Gamalero, E., & Glick, B. R. (2015). Bacterial modulation of plant ethylene levels. Plant Physiology, 169, 13–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Qi, G., Yin, R., Zhang, H., Li, C., & Zhao, X. (2016). Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Scientific Reports, 6, 28756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng, C., Nie, X., Tang, Z., Zhang, Y., Lin, J., Sun, M., & Peng, D. (2016). A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6, 25012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick, B. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiology Research, 169, 30–33.

    Article  CAS  Google Scholar 

  • Gortari, M. C., & Hours, R. A. (2008). Fungal chitinases and their biological role in the antagonism onto nematode eggs. A review. Mycological progress, 7, 221–238.

    Article  Google Scholar 

  • Guo, J. P., Zhu, C. Y., Zhang, C. P., Chu, Y. S., Wang, Y. L., et al. (2012). Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. Journal of the American Chemical Society, 134, 20306–20309.

    Article  CAS  PubMed  Google Scholar 

  • He, Q., Wang, D., Li, B., Maqsood, A., & Wu, H. (2020). Nematicidal evaluation and active compounds isolation of Aspergillus japonicus ZW1 against root-knot nematodes Meloidogyne incognita. Agronomy, 10, 1222.

    Article  CAS  Google Scholar 

  • Hu, K., & Webster, J. M. (1995). Mortality of plant-parasitic nematodes caused by bacterial (Xenorhabdus spp. and Photorhabdus luminescens) culture media. Journal of Nematology, 27, 502–503.

    Google Scholar 

  • Hu, K., Li, J., & Webster, J. M. (1996). 3,5-Dihydroxy-4-isopropylstilbene: A selective nematicidal compound from the culture filtrate of Photorhabdus luminescens. Canadian Journal of Plant Pathology, 18, 104.

    Google Scholar 

  • Hu, K., Li, J., Wang, W., Wu, H., Lin, H., & Webster, J. M. (1998). Comparison of metabolites produced in vitro and in vivo by Photorhabdus luminescens, a bacterial symbiont of the entomopathogenic nematode Heterorhabditis megidis. Canadian Journal of Microbiology, 44, 1072–1077.

    Article  CAS  Google Scholar 

  • Hu, K., Li, J., & Webster, J. M. (1999). Nematicidal metabolites produced by Photorhabdus luminescens (Enterobacteriaceae), bacterial symbiont of entomopathogenic nematodes. Nematology, 1, 457–469.

    Article  CAS  Google Scholar 

  • Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L., & Zhang, K. (2005). An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Research in Microbiology, 156, 719–727.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C., & Mo, M. (2010). Characterisation of volatiles produced from Bacillus megaterium YFM3. 25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology, 126, 417–422.

    Article  CAS  Google Scholar 

  • Huang, X., Zhang, K., Yu, Z., & Li, G. (2015). Microbial control of phytopathogenic nematodes. In B. Lugtenberg (Ed.), Principles of plant-microbe interactions: Microbes for sustainable agriculture (pp. 155–164). Springer. https://doi.org/10.1007/978-3-319-08575-3_17

    Chapter  Google Scholar 

  • Huang, D., Yu, C., Shao, Z., Cai, M., Li, G., et al. (2020). Identification and characterisation of nematicidal volatile organic compounds from deep-sea Virgibacillus dokdonensis MCCC 1A00493. Molecules, 25, 744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iatsenko, I., Boichenko, I., & Sommer, R. J. (2014). Bacillus thuringiensis DB27 produces two novel protoxins, Cry21Fa1 and Cry21Ha1, which act synergistically against nematodes. Applied and Environmental Microbiology, 80, 3266–3275.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ijaz, M., Tahir, M., Shahid, M., Ul-Allah, S., Sattar, A., et al. (2019). Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertiliser. Brazilian Journal of Microbiology, 50, 449–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K. S., et al. (2016). Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One, 11, e0156230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jestoi, M. (2008). Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—A review. Critical Reviews in Food Science and Nutrition, 48, 21–49.

    Article  CAS  PubMed  Google Scholar 

  • Ju, S., Lin, J., Zheng, J., Wang, S., Zhou, H., & Sun, M. (2016). Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Applied and Environmental Microbiology, 82, 2112–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawazu, K., Murakami, T., Ono, Y., Kanzaki, H., Kobayashi, A., Mikawa, T., & Yoshikawa, N. (1993). Isolation and characterisation of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Bioscience, Biotechnology, and Biochemistry, 57, 98–101.

    Article  CAS  PubMed  Google Scholar 

  • Kempster, V. N., Davies, K. A., & Scott, E. S. (2001). Chemical and biological induction of resistance to the clover cyst nematode (Heterodera trifolii) in white clover (Trifolium repens). Nematology, 3, 35–43.

    Article  Google Scholar 

  • Khalil, M. S. (2016). Utilisation of biomaterials as soil amendments and crop protection agents in integrated nematode management. In K. Hakeem, M. Akhtar, & S. Abdullah (Eds.), Plant, soil and microbes, Volume 1. Implications in crop science (pp. 203–224). Springer. https://doi.org/10.1007/978-3-319-27455-3_11

    Chapter  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31, 346–352.

    Article  CAS  Google Scholar 

  • Khan, A., Shaukat, S. S., Islam, S., & Khan, A. (2012). Evaluation of fluorescent pseudomonad isolates for their activity against some plant-parasitic nematodes. American-Eurasian Journal of Agricultural Environmental Sciences, 12, 1496–1506.

    CAS  Google Scholar 

  • Kim, T. Y., Jang, J. Y., Jeon, S. J., Lee, H. W., Bae, C. H., et al. (2016). Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. Journal of Microbiology and Biotechnology, 26, 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  • Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., & Berg, G. (2002). Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid White) Chitwood. Canadian Journal of Microbiology, 48, 772–786.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Singh, R., Yadav, A., Giri, D. D., Singh, P. K., & Pandey, K. D. (2016). Isolation and characterisation of bacterial endophytes of Curcuma longa L. 3 Biotech, 6, 1–8.

    Article  PubMed  Google Scholar 

  • Kundu, A., Saha, S., Walia, S., & Dutta, T. K. (2016). Anti-nemic secondary metabolites produced by Fusarium oxysporum f. sp. ciceris. Journal of Asia-Pacific Entomology, 19, 631–636.

    Article  Google Scholar 

  • Kurt, L. A., & Poltorak, V. A. (1980). Action on plant nematodes of metabolic products of the fungus Aspergillus niger van Tieghem. Byulleten’ Vsesoyuznogo Instituta Gel’mintologii im. KI Skryabina (Fitogel’mintologiya), 26, 39–42.

    Google Scholar 

  • Kusakabe, A., Wang, C., Xu, Y. M., Molnár, I., & Stock, S. P. (2022). Selective toxicity of secondary metabolites from the entomopathogenic bacterium Photorhabdus luminescens sonorensis against selected plant parasitic nematodes of the Tylenchina suborder. Microbiology Spectrum, 10, e02577-21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusakabe, A., Molnár, I., & Stock, S. P. (2023). Photorhabdus-derived secondary metabolites reduce root infection by Meloidogyne incognita in cowpea. Plant Disease. https://doi.org/10.1094/PDIS-11-22-2574-SC. Advance online publication.

  • Kwon, H. R., Son, S. W., Han, H. R., Choi, G. J., Jang, K. S., et al. (2007). Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus. The Plant Pathology Journal, 23, 318–321.

    Article  Google Scholar 

  • Lee, Y. S., Park, Y. S., Anees, M., Kim, Y. C., Kim, Y. H., & Kim, K. Y. (2013). Nematicidal activity of Lysobacter capsici YS1215 and the role of gelatinolytic proteins against root-knot nematodes. Biocontrol Science and Technology, 23, 1427–1441.

    Article  Google Scholar 

  • Lee, Y. S., Anees, M., Park, Y. S., Kim, S. B., Jung, W. J., & Kim, K. Y. (2014). Purification and properties of a Meloidogyne-antagonistic chitinase from Lysobacter capsici YS1215. Nematology, 16, 63–72.

    Article  Google Scholar 

  • Li, L., Ma, M., Liu, Y., Zhou, J., Qu, Q., et al. (2011). Induction of trap formation in nematode-trap** fungi by a bacterium. FEMS Microbiology Letters, 322, 157–165.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Sun, Y., Chen, F., Hao, D., & Tan, J. (2023). An alkaline protease from Bacillus cereus NJSZ-13 can act as a pathogenicity factor in infection of pinewood nematode. BMC Microbiology, 23, 1–11.

    Google Scholar 

  • Lian, L. H., Tian, B. Y., **ong, R., Zhu, M. Z., Xu, J., & Zhang, K. Q. (2007). Proteases from Bacillus: A new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in Applied Microbiology, 45, 262–269.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. J., Zhai, C. Y., Liu, Y., & Zhang, K. Q. (2009). Nematicidal activity of Paecilomyces spp. and isolation of a novel active compound. The Journal of Microbiology, 47, 248–252.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Z., Budiharjo, A., Wang, P., Shi, H., Fang, J., et al. (2013). The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Applied Microbiology and Biotechnology, 97, 10081–10090.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Meyer, S. L., Chitwood, D. J., Chauhan, K. R., Dong, D., et al. (2017). New nematotoxic indoloditerpenoid produced by Gymnoascus reessii za-130. Journal of Agricultural and Food Chemistry, 65, 3127–3132.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, E. P., Ribeiro, R. C. F., Xavier, A. A., Alves, R. M., Castro, M. T. D., et al. (2019). Effect of Bacillus subtilis on Meloidogyne javanica and on tomato growth promotion. Journal of Experimental Agriculture International, 35, 1–8.

    Google Scholar 

  • Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteses produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.

    Article  CAS  Google Scholar 

  • Luo, X., Chen, L., Huang, Q., Zheng, J., Zhou, W., et al. (2013). Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Applied and Environmental Microbiology, 79, 460–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maagd, R. A., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonise the insect world. Trends in Genetics, 17, 193–199.

    Article  PubMed  Google Scholar 

  • Mankau, R. (1969). Nematicidal activity of Aspergillus niger culture filtrate. Phytophathology, 59, 1170.

    Google Scholar 

  • Marin, M., Mena, J., Franco, R., Pimentel, E., & Sánchez, I. (2010). Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C 924 and Glomus fasciculatum and Glomus clarum fungi on lettuce microrrizal colonisation and foliar weight. Biotecnologia Aplicada, 27, 48–51.

    Google Scholar 

  • Marques, A. P., Pires, C., Moreira, H., Rangel, A. O., & Castro, P. M. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42, 1229–1235.

    Article  CAS  Google Scholar 

  • Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S., & Aroian, R. V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155, 1693–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Servat, S., Pinyol-Escala, L., Daura-Pich, O., Almazán, M., Hernández, I., López-García, B., & Fernández, C. (2023). Characterisation of Lysobacter enzymogenes B25, a potential biological control agent of plant-parasitic nematodes, and its mode of action. AIMS Microbiology, 9, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • McSorley, R. (2011). Overview of organic amendments for management of plant-parasitic nematodes, with case studies from Florida. Journal of Nematology, 43, 69–81.

    PubMed  PubMed Central  Google Scholar 

  • Mendoza, A., Kiewnick, S., & Sikora, R. (2008). In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchusdipsaci. Biocontrol Science and Technology, 18, 377–389.

    Article  Google Scholar 

  • Mercer, C. F., Greenwood, D. R., & Grant, J. L. (1992). Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood (Nematoda: Tylenchida). Nematologica, 38, 227–236.

    Article  Google Scholar 

  • Meyer, S. L., Halbrendt, J. M., Carta, L. K., Skantar, A. M., Liu, T., Abdelnabby, H. M., & Vinyard, B. T. (2009). Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. Journal of Nematology, 41, 274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mhatre, P. H., Kumar, J., Shakil, N. A., Kumar, R., & Adak, T. (2017). New formulations of salicylic acid and their bioefficacy evaluation on wheat against cereal cyst nematode. Indian Journal of Nematology, 47(2), 155–165.

    Google Scholar 

  • Mhatre, P. H., Karthik, C., Kadirvelu, K., Divya, K. L., Venkatasalam, E. P., et al. (2019). Plant growth promoting rhizobacteria (PGPR): A potential alternative tool for nematodes bio-control. Biocatalysis and Agricultural Biotechnology, 17, 119–128.

    Article  Google Scholar 

  • Mhatre, P. H., Patil, J., Rangasamy, V., Divya, K. L., Tadigiri, S., et al. (2020). Biocontrol potential of Steinernema cholashanense (Nguyen) on larval and pupal stages of potato tuber moth, Phthorimaea operculella (Zeller). Journal of Helminthology, 94, e188.

    Article  CAS  PubMed  Google Scholar 

  • Mhatre, P. H., Divya, K. L., Venkatasalam, E. P., Watpade, S., Bairwa, A., & Patil, J. (2022). Management of potato cyst nematodes with special focus on biological control and trap crop** strategies. Pest Management Science, 78(9), 3746–3759.

    Google Scholar 

  • Miller, D. L., & Roth, M. B. (2007). Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proceedings of National Academy of Sciences, USA, 104, 20618–20622.

    Article  CAS  Google Scholar 

  • Millew, P. M., & Sands, D. C. (1977). Effects of hydrolytic enzymes on plant parasitic nematodes. Journal of Nematology, 9, 192–197.

    Google Scholar 

  • Mokbel, A. A., Obad, I. M., & Ibrahim, I. K. A. (2009). The role of antagonistic metabolites in controlling root-knot nematode, Meloidogyne arenaria on tomato. Alexandria Journal of Agricultural Sciences, 54, 199–205.

    Google Scholar 

  • Mota, L. C. B. M., & dos Santos, M. A. (2016). Chitin and chitosan on Meloidogyne javanica management and on chitinase activity in tomato plants. Tropical Plant Pathology, 41, 84–90.

    Article  Google Scholar 

  • Mota, M. S., Gomes, C. B., Souza, I. T., & Moura, A. B. (2017). Bacterial selection for biological control of plant disease: Criterion determination and validation. Brazilian Journal of Microbiology, 48, 62–70.

    Article  CAS  PubMed  Google Scholar 

  • Nandi, M., Selin, C., Brassinga, A. K. C., Belmonte, M. F., Fernando, W. D., Loewen, P. C., & De Kievit, T. R. (2015). Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One, 10, e0123184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento, F., Vicente, C., Espada, M., Glick, R., Mota, M., & Oliveira, S. (2012). The use of the ACC deaminase producing bacterium Pseudomonas putida UW4 as a biocontrol agent for pine wilt disease. BioControl, 58, 427–433.

    Article  Google Scholar 

  • Neidig, N., Paul, R. J., Scheu, S., & Jousset, A. (2011). Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microbial Ecology, 61, 853–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikoo, F. S., Sahebani, N., Aminian, H., Mokhtarnejad, L., & Ghaderi, R. (2014). Induction of systemic resistance and defense-related enzymes in tomato plants using Pseudomonas fluorescens CHAO and salicylic acid against root-knot nematode Meloidogyne javanica. Journal of Plant Protection Research, 54, 383–389.

    Article  CAS  Google Scholar 

  • Nitao, J. K., Meyer, S. L., Oliver, J. E., Schmidt, W. F., & Chitwood, D. J. (2002). Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology, 4, 55–63.

    Article  CAS  Google Scholar 

  • Niu, Q., Huang, X., Zhang, L., Li, Y., Li, J., Yang, J., & Zhang, K. (2006). A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes. Archives of Microbiology, 185, 439–448.

    Article  CAS  PubMed  Google Scholar 

  • Niu, Q., Huang, X., Zhang, L., Xu, J., Yang, D., et al. (2010). A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proceedings of the National Academy of Sciences, 107, 16631–16636.

    Article  CAS  Google Scholar 

  • Oliveira, D. F., Carvalho, H. W., Nunes, A. S., Silva, G. H., Campos, V. P., Júnior, H. M., & Cavalheiro, A. J. (2009). The activity of amino acids produced by Paenibacillus macerans and from commercial sources against the root-knot nematode Meloidogyne exigua. European Journal of Plant Pathology, 124, 57–63.

    Article  CAS  Google Scholar 

  • Oliveira, D. F., Santos Júnior, H. M., Nunes, A. S., Campos, V. P., Pinho, R. S. D., & Gajo, G. C. (2014). Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. Anais da Academia Brasileira de Ciências, 86, 525–538.

    Article  CAS  PubMed  Google Scholar 

  • Orozco, R. A., Molnár, I., Bode, H., & Stock, S. P. (2016). Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. Journal of Invertebrate Pathology, 141, 45–52.

    Article  CAS  PubMed  Google Scholar 

  • Page, A. P., Stepek, G., Winter, A. D., & Pertab, D. (2014). Enzymology of the nematode cuticle: A potential drug target ? International Journal for Parasitology: Drugs and Drug Resistance, 4, 133–141.

    PubMed  PubMed Central  Google Scholar 

  • Paiva, G., Proença, D. N., Francisco, R., Verissimo, P., Santos, S. S., et al. (2013). Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS One, 8, e79705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar, P., Doshi, J., Patil, S. G., Dandekar, P., & Poornima, K. (2023). The characterisation of chitinolytic soil bacterial isolates for their antagonistic activity against root knot nematode Meloidogyne incognita: An effort towards develo** ‘green’ nematicidal agents. BioControl, 68, 511–524. https://doi.org/10.1007/s10526-023-10210-9

    Article  CAS  Google Scholar 

  • Perry, R. N., & Trett, M. W. (1986). Ultrastructure of the eggshell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie, 9, 399–403.

    Google Scholar 

  • Pichersky, E., Noel, J. P., & Dudareva, N. (2006). Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science, 311, 808–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad, M., Srinivasan, R., Chaudhary, M., Choudhary, M., & Jat, L. K. (2019). Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Perspectives and challenges. PGPR Amelioration in Sustainable Agriculture, 129–157. https://doi.org/10.1016/B978-0-12-815879-1.00007-0

  • Prathumpai, W., & Kocharin, K. (2014). Phomalactone optimisation and production of entomopathogenic fungi; Ophiocordyceps communis BCC 1842 and BCC 2763. Preparative Biochemistry and Biotechnology, 46, 44–48.

    Article  Google Scholar 

  • Rahul, S., Chandrashekhar, P., Hemant, B., Chandrakant, N., Laxmikant, S., & Satish, P. (2014). Nematicidal activity of microbial pigment from Serratia marcescens. Natural Product Research, 28, 1399–1404.

    Article  CAS  PubMed  Google Scholar 

  • Ramyabharathi, S. A., Sankari Meena, K., Rajendran, L., Karthikeyan, G., Jonathan, E. I., & Raguchander, T. (2018). Biocontrol of wilt-nematode complex infecting gerbera by Bacillus subtilis under protected cultivation. Egyptian Journal Of Biological Pest Control, 28, 1–9.

    Article  Google Scholar 

  • Ray, C., & Hussey, R. S. (1995). Evidence for proteolytic processing of a cuticle collagen in a plant-parasitic nematode. Molecular and Biochemical Parasitology, 72, 243–246.

    Article  CAS  PubMed  Google Scholar 

  • Richards, T. A., & Talbot, N. J. (2018). Osmotrophy. Current Biology, 28, 1179–1180.

    Article  Google Scholar 

  • Rijavec, T., & Lapanje, A. (2016). Hydrogen cyanide in the rhizosphere: Not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in Microbiology, 7, 1785.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Kabana, R. (1986). Organic and inorganic nitrogen amendments to soil as nematode suppressants. Journal of Nematology, 18, 129–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Kabana, R., Jordan, J. W., & Hollis, J. P. (1965). Nematodes: Biological control in rice fields: Role of hydrogen sulfide. Science, 148, 524–526.

    Article  CAS  PubMed  Google Scholar 

  • Rucker, C. J., & Zachariah, K. (1986). The influence of bacteria on trap induction in predacious hyphomycetes. Canadian Journal of Botany, 65, 1160–1162.

    Article  Google Scholar 

  • Sayre, R. M. (1988). Bacterial diseases of nematodes and their role in controlling nematode populations. Agriculture, Ecosystems and Environment, 24, 263–279.

    Article  Google Scholar 

  • Sela, S., Schickler, H., Chet, I., & Spiegel, Y. (1998). Purification and characterisation of a Bacillus cereus collagenolytic/proteolytic enzyme and its effect on Meloidogyne javanica cuticular proteins. European Journal of Plant Pathology, 104, 59–67.

    Article  CAS  Google Scholar 

  • Seo, H. J., Park, A. R., Kim, S., Yeon, J., Yu, N. H., et al. (2019). Biological control of root-knot nematodes by organic acid-producing Lactobacillus brevis wikim0069 isolated from kimchi. The Plant Pathology Journal, 35, 662–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanahan, P., O’Sullivan, D. J., Simpson, P., Glennon, J. D., & O’Gara, F. (1992). Isolation of 2, 4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58, 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrar, A. M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E. P., & Banfield, J. F. (2020). Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. MBio, 11, 10–1128.

    Article  Google Scholar 

  • Siddiqui, I. A., & Shaukat, S. S. (2003). Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives. Journal of Phytopathology, 151, 231–238.

    Article  Google Scholar 

  • Siddiqui, I. A., Haas, D., & Heeb, S. (2005). Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Applied and Environmental Microbiology, 71, 5646–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H., & Khan, A. (2006). Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology, 22, 641–650.

    Article  CAS  Google Scholar 

  • Soliman, G. M., Ameen, H. H., Abdel-Aziz, S. M., & El-Sayed, G. M. (2019). In vitro evaluation of some isolated bacteria against the plant parasite nematode Meloidogyne incognita. Bulletin of the National Research Centre, 43, 1–7.

    Article  Google Scholar 

  • Su, H. N., Xu, Y. Y., Wang, X., Zhang, K. Q., & Li, G. H. (2016). Induction of trap formation in nematode-trap** fungi by bacteria-released ammonia. Letters in Applied Microbiology, 62, 349–353.

    Article  CAS  PubMed  Google Scholar 

  • Tian, H., Riggs, R. D., & Crippen, D. L. (2000). Control of soybean cyst nematode by chitinolytic bacteria with chitin substrate. Journal of Nematology, 32, 370–376.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, B., Li, N., Lian, L., Liu, J., Yang, J., & Zhang, K. Q. (2006). Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Archives of Microbiology, 186, 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Tian, B. Y., Yang, J. K., Lian, L. H., Wang, C. Y., & Zhang, K. Q. (2007). Role of neutral protease from Brevibacillus laterosporus in pathogenesis of nematode. Applied Microbiology and Biotechnology, 74, 372–380.

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., & Jansson, H. B. (2002). Purification and characterisation of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Tunlid, A., & Jansson, S. (1991). Proteases and their involvement in the infection and immobilisation of nematodes by the nematophagous fungus Arthrobotrys oligospora. Applied and Environmental Microbiology, 57, 2868–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turatto, M. F., Dourado, F. D. S., Zilli, J. E., & Botelho, G. R. (2018). Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Brazilian Journal of Microbiology, 49, 54–59.

    Article  CAS  PubMed  Google Scholar 

  • Viljoen, J. J., Labuschagne, N., Fourie, H., & Sikora, R. A. (2019). Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Tropical Plant Pathology, 44, 284–291.

    Article  Google Scholar 

  • Wang, B., Wu, W. P., & Liu, X. Z. (2007). Purification and characterisation of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia, 163, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Li, G. H., Zou, C. G., Ji, X. L., Liu, T., et al. (2014). Bacteria can mobilise nematode-trap** fungi to kill nematodes. Nature Communications, 5, 5776.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. L., Li, L. F., Li, D. X., Wang, B., Zhang, K., & Niu, X. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.

    Article  CAS  PubMed  Google Scholar 

  • Westerdahl, B. B., Carlson, H. L., Grant, J., Radewald, J. D., Welch, N., et al. (1992). Management of plant-parasitic nematodes with a chitin-urea soil amendment and other materials. Journal of Nematology, 24(4S), 669–680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton, D. (1980). Nematode egg shells. Parasitology, 81(2), 447–463.

    Article  CAS  PubMed  Google Scholar 

  • Woo-**, J., Jung, S. J., An, K. N., **, Y. L., Park, R. D., et al. (2002). Effect of chitinase produced form Paenibacillus illinoisensis on egg hatching of root-knot nematode, Meloidogyne spp. Journal of Microbiology and Biotechnology, 12, 865–871.

    Google Scholar 

  • Wright, D. J., & Perry, R. N. (2006). Reproduction, physiology and biochemistry. In R. N. Perry & M. Moens (Eds.), Plant nematology (2nd ed., 447pp.). CABI.

    Google Scholar 

  • **ang, N., Lawrence, K. S., & Donald, P. A. (2018). Biological control potential of plant growth-promoting rhizobacteria suppression of Meloidogyne incognita on cotton and Heterodera glycines on soybean: A review. Journal of Phytopathology, 166, 449–458.

    Article  Google Scholar 

  • Xu, Y. Y., Lu, H., Wang, X., Zhang, K. Q., & Li, G. H. (2015). Effect of volatile organic compounds from bacteria on nematodes. Chemistry Biodiversity, 12, 1415–1421.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, I., Suide, H., Henmt, T., & Yamano, T. (1970). Antimicrobial α,β-unsaturated δ-1actones from fungi. Takeda Kenkyusho Ho, 29, 1–10.

    CAS  Google Scholar 

  • Yang, L. L., Huang, Y., Liu, J., Ma, L., Mo, M. H., Li, W. J., & Yang, F. X. (2012). Lysinibacillus mangiferahumi sp. nov., a new bacterium producing nematicidal volatiles. Antonie Van Leeuwenhoek, 102, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Liang, L., Li, J., & Zhang, K. Q. (2013). Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97, 7081–7095.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, G. Y., Lee, Y. S., Lee, S. Y., Park, R. D., Hyun, H. N., Nam, Y., & Kim, K. Y. (2012). Effects on Meloidogyne incognita of chitinase, glucanase and a secondary metabolite from Streptomyces cacaoi GY525. Nematology, 14, 175–184.

    Article  CAS  Google Scholar 

  • Zheng, Z., Zheng, J., Zhang, Z., Peng, D., & Sun, M. (2016). Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Scientific Reports, 6, 31341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mhatre, P.H. et al. (2024). Nematicidal Activity of Secondary Metabolites from Soil Microbes. In: Chaudhary, K.K., Meghvansi, M.K., Siddiqui, S. (eds) Sustainable Management of Nematodes in Agriculture, Vol.2: Role of Microbes-Assisted Strategies. Sustainability in Plant and Crop Protection, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-52557-5_12

Download citation

Publish with us

Policies and ethics

Navigation