Deposition and Characterization of Magnetron Sputtered TiN Coatings with Variable Stoichiometry

  • Conference paper
  • First Online:
Physics and Mechanics of New Materials and Their Applications (PHENMA 2023)

Abstract

In the present paper, a series of TiN coatings, deposited using magnetron sputtering unit were characterized in terms of their stoichiometry, microgeometry, and microstructure. The coatings were obtained at 1, 3, 5, 7 sccm N2 flow at constant chamber pressure. Their thickness and microstructure were studied using scanning electron microscopy and the stoichiometry was observed using energy dispersive X-ray analysis. The microgeometry of the coatings was obtained using atomic-force microscope. Stable modes of obtaining TiN coatings with nitrogen content from 8.56 to 46.04 atomic percent with an average deposition rate from 6.8 to 8.86 angstroms per second were demonstrated. The results demonstrated an almost linear relationship between the composition of the coatings and the composition of the gas mixture during the deposition process up to a nitrogen flow of 5 sccm. At higher values of the nitrogen flow, the composition of the coatings does not change significantly. This observation can be used to predict the required composition of the gas mixture under the given process parameters to obtain TiN coatings of the required thickness and with the required elemental composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 242.64
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Çomakl, O.: Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram. Int. 47(3), 4149–4156 (2021). https://doi.org/10.1016/j.ceramint.2020.09.292

    Article  CAS  Google Scholar 

  2. Ghailane, A., Makha, M., Larhlimi, H., Alami, J.: Design of hard coatings deposited by HiPIMS and dcMS. Mater. Lett. 280, 128540 (2020). https://doi.org/10.1016/j.matlet.2020.128540

    Article  CAS  Google Scholar 

  3. Sadyrin, E.V. et al.: Nanoindentation derived mechanical properties of TiN thin film deposited using magnetron sputtering method. In: Altenbach, H., Eremeyev, V.A., Igumnov, L.A., Bragov, A. (eds.) Deformation and Destruction of Materials and Structures Under Quasi-static and Impulse Loading. Advanced Structured Materials, vol. 186, pp. 245–254. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-22093-7_17

  4. Kainz, C., Schalk, N., Tkadletz, M., Mitterer, C., Czettl, C.: Microstructure and mechanical properties of CVD TiN/TiBN multilayer coatings. Surf. Coat. Technol. 370, 311–319 (2019). https://doi.org/10.1016/j.surfcoat.2019.04.086

    Article  CAS  Google Scholar 

  5. Lee, C.Y., Lin, S.J., Yeh, J.W.: (AlCrNbSiTi) N/TiN multilayer films designed by a hybrid coating system combining high-power impulse magnetron sputtering and cathode arc deposition. Surf. Coat. Technol. 468, 129757 (2023). https://doi.org/10.1016/j.surfcoat.2023.129757

    Article  CAS  Google Scholar 

  6. Jannat, S., Rashtchi, H., Atapour, M., Golozar, M.A., Elmkhah, H., Zhiani, M.: Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. J. Power. Sources 435, 226818 (2019). https://doi.org/10.1016/j.jpowsour.2019.226818

    Article  CAS  Google Scholar 

  7. Kazemi, M., Ahangarani, S., Esmailian, M., Shanaghi, A.: Investigation on the corrosion behavior and biocompatibility of Ti-6Al-4V implant coated with HA/TiN dual layer for medical applications. Surf. Coat. Technol. 397, 126044 (2020). https://doi.org/10.1016/j.surfcoat.2020.126044

    Article  CAS  Google Scholar 

  8. Silva, F.C.D., et al.: Corrosion resistance of functionally graded TiN/Ti coatings for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 45(58), 33993–34010 (2020). https://doi.org/10.1016/j.ijhydene.2020.09.037

  9. Damerchi, E., Abdollah-zadeh, A., Poursalehi, R., Mehr, M.S.: Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method. J. Alloy. Compd. 772, 612–624 (2019). https://doi.org/10.1016/j.jallcom.2018.09.083

    Article  CAS  Google Scholar 

  10. Roy, S.: Functionally graded coatings on biomaterials: a critical review. Mater. Today Chem. 18, 100375 (2020). https://doi.org/10.1016/j.mtchem.2020.100375

    Article  Google Scholar 

  11. da Silva, F.C., et al.: Grid-assisted magnetron sputtering deposition of nitrogen graded TiN thin films. SN Appl. Sci. 2, 1–8 (2020). https://doi.org/10.1007/s42452-020-2617-3

    Article  CAS  Google Scholar 

  12. Nascimento, I.O., et al.: Comparative study of structural and stoichiometric properties of titanium nitride films deposited by cathodic cage plasma deposition and magnetron sputtering. Eur. Phys. J. Plus 137(3), 319 (2022). https://doi.org/10.1140/epjp/s13360-022-02543-8

    Article  CAS  Google Scholar 

  13. Shao, S., et al.: Influence of the stoichiometry of tin-based 2D/3D perovskite active layers on solar cell performance. J. Mater. Chem. A 9(16), 10095–10103 (2021). https://doi.org/10.1039/D0TA10277F

    Article  CAS  Google Scholar 

  14. Chen, J., et al.: Performance and damage mechanism of TiN/ZrN nano-multilayer coatings based on different erosion angles. Appl. Surf. Sci. 513, 145457 (2020). https://doi.org/10.1016/j.apsusc.2020.145457

    Article  CAS  Google Scholar 

  15. Mansoor, N.S., Fattah-alhosseini, A., Elmkhah, H., Shishehian, A.: Electrochemical behavior of TiN, CrN and TiN/CrN nanostructured coatings on the nickel-chromium alloy used in dental fixed prosthesis. J. Asian Ceram. Soc. 8(3), 694–710 (2020). https://doi.org/10.1080/21870764.2020.1776915

    Article  Google Scholar 

  16. Aizikovich, S.M., Nikolaev, A.L., Sadyrin, E.V., Krenev, L.I., Irkha, V.A., Galybin, A.N.: Indentation of thin coatings: theoretical and experimental investigation. Bound. Elem. Mesh Reduct. Methods XLV 134, 157 (2022)

    Google Scholar 

  17. Nikolaev, A.L., Karapetyan, G.Y., Nesvetaev, D.G., Lyanguzov, N.V., Dneprovski, V.G., Kaidashev, E.M.: Preparation and investigation of ZnO nanorods array based resistive and SAW CO gas sensors. In: Chang, S.H., Parinov, I., Topolov, V. (eds.) Advanced Materials. Springer Proceedings in Physics, vol. 152, pp. 27–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03749-3_3

  18. Zhilin, D.A., Lyanguzov, N.V., Nikolaev, L.A., Pushkariov, V.I., Kaidashev, E.M.: Photoelectric properties of MSM structure based on ZnO nanorods, received by thermal evaporation and carbothermal synthesis. J. Phys. Conf. Ser. 541(1), 012038 (2014). https://doi.org/10.1088/1742-6596/541/1/012038

  19. Pushkariov, V.I., Nikolaev, A.L., Kaidashev, E.M.: Synthesis and characterization of ZnO nanorods obtained by catalyst-free thermal technique. J. Phys. Conf. Ser. 541(1), 012031 (2014)

    Google Scholar 

  20. Nikolaev, A.L., Kazmina, M.A., Lyanguzov, N.V., Abdulvakhidov, K.G., Kaidashev, E.M.: Synthesis of ZnO nanorods for piezoelectric resonators and sensors. J. Adv. Dielectr. 12(01), 2160020 (2022)

    Article  CAS  Google Scholar 

  21. Kuprin, A.S., et al.: Structure and properties of ZrON coatings synthesized by cathodic arc evaporation. Materials 14(6), 1483 (2021). https://doi.org/10.3390/ma14061483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nikolaev, A.L., Mitrin, B.I., Sadyrin, E.V., Zelentsov, V.B., Aguiar, A.R., Aizikovich, S.M.: Mechanical properties of microposit S1813 thin layers. In: Aizikovich, S., Altenbach, H., Eremeyev, V., Swain, M., Galybin, A. (eds.) Modeling, Synthesis and Fracture of Advanced Materials for Industrial and Medical Applications. Advanced Structured Materials, vol. 136, pp. 137–146. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48161-2_9

  23. Sadyrin, E.V., Yogina, D.V., Swain, M.V., Maksyukov, S.Y., Vasiliev, A.S.: Efficacy of dental materials in terms of apparent mineral density restoration: Composite resin, glass ionomer cement and infiltrate. Compos. Part C Open Access 6, 100192 (2021). https://doi.org/10.1016/j.jcomc.2021.100192

    Article  CAS  Google Scholar 

  24. Zelentsov, V.B., Sadyrin, E.V., Sukiyazov, A.G., Shubchinskaya, N.Y.: On a method for determination of Poisson’s ratio and Young modulus of a material. In: MATEC web of conferences. EDP Sciences, vol. 226, p. 03027 (2018). https://doi.org/10.1051/matecconf/201822603027

  25. Sadyrin, E.V., et al.: Influence of citric acid concentration and etching time on enamel surface roughness of prepared human tooth: in vitro study. Plasticity Damage Fract. Adv. Mater. 135–150 (2020). https://doi.org/10.1007/978-3-030-34851-9_8

  26. Zelentsov, V.B., Sadyrin, E.V., Mitrin, B.I., Swain, M.V.: Mathematical tools for recovery of the load on the fissure according to the micro-CT results. J. Mech. Behav. Biomed. Mater. 138, 105625 (2023). https://doi.org/10.1016/j.jmbbm.2022.105625

  27. Popenko, E.M., Gromov, A.A., Pautova, Y.I., Chaplina, E.A., Ritzhaupt-Kleissl, H.J.: SEMEDX study of the crystal structure of the condensed combustion products of the aluminum nanopowder burned in air under the different pressures. Appl. Surf. Sci. 257(8), 3641–3644 (2011). https://doi.org/10.1016/j.apsusc.2010.11.096

    Article  CAS  Google Scholar 

  28. Joshi, J., Homburg, S.V., Ehrmann, A.: Atomic force microscopy (AFM) on biopolymers and hydrogels for biotechnological applications − possibilities and limits. Polymers 14(6), 1267 (2022). https://doi.org/10.3390/polym14061267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, T.Y., Xu, W.H., Zhao, M.H.: The role of plastic deformation of rough surfaces in the size-dependent hardness. Acta Mater. 52(1), 57–68 (2004). https://doi.org/10.1016/j.actamat.2003.08.026

    Article  CAS  Google Scholar 

  30. Singh, S., Kumar, H., Kumar, S., Chaitanya, S.: A systematic review on recent advancements in abrasive flow machining (AFM). Mater. Today Proc. 56, 3108–3116 (2022). https://doi.org/10.1016/j.matpr.2021.12.273

    Article  Google Scholar 

  31. Smith, J.R., Larson, C., Campbell, S.A.: Recent applications of SEM and AFM for assessing topography of metal and related coatings – a review. Trans. IMF 89(1), 18–27 (2011). https://doi.org/10.1179/174591910X12922367327388

    Article  CAS  Google Scholar 

  32. Bui, S.H., Vorburger, T.V., Muralikrishnan, B., Raja, J.: Surface metrology software variability in two-dimensional measurement. Pro. ASPE 2003, 1–4 (2003)

    Google Scholar 

  33. Orji, N.G., Vorburger, T.V., Gu, X., Raja, J.: Surface metrology software variability in two-dimensional measurements, pp. 419–422 (2003)

    Google Scholar 

  34. Brożek-Mucha, Z.: Comparison of cartridge case and airborne GSR – a study of the elemental composition and morphology by means of SEM-EDX. X-Ray Spectrom. Int. J. 36(6), 398–407 (2007). https://doi.org/10.1002/xrs.990

    Article  CAS  Google Scholar 

  35. Jones, H.G., Mingard, K.P., Cox, D.C., Winiarski, B., Gholinia, A.: Metrology of three-dimensional techniques in focused ion beam microscopy. In: Bernard, D., Buffière, J.Y., Pollock, T., Poulsen, H.F., Rollett, A., Uchic, M. (eds.) Proceedings of the 2nd International Congress on 3D Materials Science, pp. 119–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48123-4_19

Download references

Acknowledgements

Lapitskaya V. A. acknowledges the support of the Belarus Republican Foundation for Fundamental Research (grant No. T23RNF-132), A. L. Nikolaev acknowledges the support of the Russian Science Foundation (grant No. 23-49-10062, https://rscf.ru/project/23-49-10062/). The experiments were conducted in the Nanocenter of Research and Education Center ”Materials”, Don State Technical University (http://nano.donstu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey L. Nikolaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikolaev, A.L., Lapitskaya, V.A., Sadyrin, E.V., Antipov, P.E., Kharchevnikov, I.O., Volkov, S.S. (2024). Deposition and Characterization of Magnetron Sputtered TiN Coatings with Variable Stoichiometry. In: Parinov, I.A., Chang, SH., Putri, E.P. (eds) Physics and Mechanics of New Materials and Their Applications. PHENMA 2023. Springer Proceedings in Materials, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-031-52239-0_9

Download citation

Publish with us

Policies and ethics

Navigation