Voltage-Gated Sodium Channels as Drug Targets in Epilepsy-Related Sodium Channelopathies

  • Chapter
  • First Online:
Ion Channels as Targets in Drug Discovery

Abstract

Voltage-gated sodium channels (VGSCs) drive cellular excitability in various cells including the neurons of the central nervous system. Genetic variants in the genes encoding the brain-expressed VGSCs have been identified in patients with severe epilepsy syndromes making clear that proper VGSC activity is required for normal neurological development and function. Given this central role in determining neuronal physiology, VGSCs are one of the most common molecular targets for currently available antiseizure medications. Yet the significant limitations of existing medications indicate a need for novel therapeutic strategies, including more precise modulation of VGSC function. In this chapter, we discuss ongoing precision medicine approaches targeting VGSCs in the treatment of epilepsy-related sodium (Na) channelopathies. Notwithstanding significant technical hurdles, modulators of VGSCs are likely to remain a mainstay in the treatment of epilepsy-related channelopathies and epilepsy more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja S, et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science. 2015;350:aac5464.

    Google Scholar 

  • Alexandrou AJ, et al. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS One. 2016;11:e0152405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker MD, Nassar MA. Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels. Pflugers Arch. 2020;472:865–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker BS, et al. The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia. 2016;57:1458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker BS, et al. Pro-excitatory alterations in sodium channel activity facilitate subiculum neuron hyperexcitability in temporal lobe epilepsy. Neurobiol Dis. 2017;108:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat A, Hjalgrim H, Møller RS. The incidence of SCN1A-related Dravet syndrome in Denmark is 1:22,000: a population-based study from 2004 to 2009. Epilepsia. 2015;56:e36–9.

    Article  CAS  PubMed  Google Scholar 

  • Bean BP. The action potential in mammalian central neurons. Nat Rev Neurosci. 2007;8:451–65.

    Article  CAS  PubMed  Google Scholar 

  • Beckh S, Noda M, Lubbert H, Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989;8:3611–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berecki G, et al. SCN1A gain of function in early infantile encephalopathy. Ann Neurol. 2019;85:514–25.

    Article  CAS  PubMed  Google Scholar 

  • Blanchard MG, et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet. 2015;52:330–7.

    Article  CAS  PubMed  Google Scholar 

  • Boiko T, et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J Neurosci. 2003;23:2306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodie MJ, Sills GJ. Combining antiepileptic drugs – rational polytherapy? Seizure. 2011;20:369–75.

    Article  PubMed  Google Scholar 

  • Brünger T, et al. Conserved patterns across ion channels correlate with variant pathogenicity and clinical phenotypes. Brain. 2022;146:923–34.

    Google Scholar 

  • Brunklaus A, Ellis R, Reavey E, Forbes GH, Zuberi SM. Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain. 2012;135:2329–36.

    Article  CAS  PubMed  Google Scholar 

  • Brunklaus A, et al. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain. 2022;145:4275–86.

    Google Scholar 

  • Bunton-Stasyshyn RKA, et al. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain. 2019;142:362–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc Natl Acad Sci U S A. 2000;97:5616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA. Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem. 1986;55:953–85.

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA. Dravet syndrome: a sodium channel interneuronopathy. Curr Opin Physio. 2018;2:42–50.

    Article  Google Scholar 

  • Catterall WA, Swanson TM. Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol. 2015;88:141–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catterall WA, Wisedchaisri G, Zheng N. The conformational cycle of a prototypical voltage-gated sodium channel. Nat Chem Biol. 2020;16:1314–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheah CS, et al. Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels. 2013;7:468–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, et al. Functional properties and differential neuromodulation of Nav1.6 channels. Mol Cell Neurosci. 2008;38:607–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CY, et al. A selective NaV1.1 activator with potential for treatment of Dravet syndrome epilepsy. Biochem Pharmacol. 2020;181:113991.

    Article  CAS  PubMed  Google Scholar 

  • Claes L, et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet. 2001;68:1327–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clairfeuille T, et al. Structural basis of α-scorpion toxin action on Nav channels. Science. 2019;363:eaav8573.

    Google Scholar 

  • Clatot J, et al. Voltage-gated sodium channels assemble and gate as dimers. Nat Commun. 2017;8:2077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colasante G, et al. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol Ther. 2020;28:235–53.

    Article  CAS  PubMed  Google Scholar 

  • Colombo E, Franceschetti S, Avanzini G, Mantegazza M. Phenytoin inhibits the persistent sodium current in neocortical neurons by modifying its inactivation properties. PLoS One. 2013;8:55329.

    Article  Google Scholar 

  • de Kovel CGF, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 2014;108:1511–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denomme N, et al. The voltage-gated sodium channel inhibitor, 4,9-anhydrotetrodotoxin, blocks human Nav1.1 in addition to Nav1.6. Neurosci Lett. 2020;724:134853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devinsky O, et al. Long-term cannabidiol treatment in patients with Dravet syndrome: an open-label extension trial. Epilepsia. 2019;60:294–302.

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj SD, Black JA, Waxman SG. NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci. 2015;16:511–9.

    Article  CAS  PubMed  Google Scholar 

  • Favero M, Sotuyo NP, Lopez E, Kearney JA, Goldberg EM. A transient developmental window of fast-spiking interneuron dysfunction in a mouse model of Dravet syndrome. J Neurosci. 2018;38:7912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederiksen K, et al. A small molecule activator of Nav1.1 channels increases fast-spiking interneuron excitability and GABAergic transmission in vitro and has anti-convulsive effects in vivo. Eur J Neurosci. 2017;46:1887–96.

    Article  PubMed  Google Scholar 

  • French JA, et al. FDA safety warning on the cardiac effects of lamotrigine: an advisory from the Ad Hoc ILAE/AES Task Force. Epilepsia Open. 2021;6:45–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao S, et al. Employing NaChBac for cryo-EM analysis of toxin action on voltage-gated Na+ channels in nanodisc. Proc Natl Acad Sci U S A. 2020;117:14187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghovanloo M-R, Ruben PC. Cannabidiol and sodium channel pharmacology: general overview, mechanism, and clinical implications. Neuroscientist. 2022;28:318–34.

    Article  CAS  PubMed  Google Scholar 

  • Goff KM, Goldberg EM. Vasoactive intestinal peptide-expressing interneurons are impaired in a mouse model of Dravet syndrome. eLife. 2019;8:e46846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldin AL. Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci. 1999;868:38–50.

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL, et al. Messenger RNA coding for only the α subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci U S A. 1986;83:7503–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han C, Huang J, Waxman SG. Sodium channel Nav1.8: emerging links to human disease. Neurology. 2016;86:473–83.

    Article  CAS  PubMed  Google Scholar 

  • Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood). 2018;243:852–63.

    Article  CAS  PubMed  Google Scholar 

  • Han Z, et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci Transl Med. 2020;12:eaaz6100.

    Article  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PRL, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464:554–61.

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne RP, Catterall WA. Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci U S A. 1981;78:4620–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartshorne RP, Messner DJ, Coppersmith JC, Catterall WA. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical β subunits. J Biol Chem. 1982;257:13888–95.

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne RP, Keller BU, Talvenheimo JA, Catterall WA, Montal M. Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc Natl Acad Sci U S A. 1985;82:240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hille B. Ion channels of excitable membranes. 3rd ed. Sunderland: Sinauer; 2001.

    Google Scholar 

  • Holland KD, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett. 2008;433:65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat Neurosci. 2009;12:996–1002.

    Article  CAS  PubMed  Google Scholar 

  • Isom LL, et al. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science. 1992;256:839–42.

    Google Scholar 

  • Isom LL, De Jongh KS, Catterall WA. Auxiliary subunits of voltage-gated ion channels. Neuron. 1994;12:1183–94.

    Article  CAS  PubMed  Google Scholar 

  • Johannesen KM, et al. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain. 2022;145:2991–3009.

    Article  PubMed  Google Scholar 

  • Johnson JP, et al. NBI-921352, a first-in-class, NaV1.6 selective, sodium channel inhibitor that prevents seizures in Scn8a gain-of-function mice, and wild-type mice and rats. eLife. 2022;11:e72468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko K, et al. Developmentally regulated impairment of parvalbumin interneuron synaptic transmission in an experimental model of Dravet syndrome. Cell Rep. 2022;38:110580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan MR, et al. Differential control of clustering of the sodium channels Nav1.2 and Nav1.6 at develo** CNS nodes of Ranvier. Neuron. 2001;30:105–19.

    Article  CAS  PubMed  Google Scholar 

  • Katz E, et al. Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons. Proc Natl Acad Sci U S A. 2018;115:E7184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo KK, et al. Distinct disulfide isomers of μ-conotoxins KIIIA and KIIIB block voltage-gated sodium channels. Biochemistry. 2012;51:9826–35.

    Article  CAS  PubMed  Google Scholar 

  • Kuo CC. A common anticonvulsant binding site for phenytoin, carbamazepine, and lamotrigine in neuronal Na+ channels. Mol Pharmacol. 1998;54:712–21.

    CAS  PubMed  Google Scholar 

  • Lamar T, et al. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis. 2017;102:38–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenk GM, et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann Neurol. 2020;87:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, et al. Action potential initiation in neocortical inhibitory interneurons. PLoS Biol. 2014;12:e1001944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. J Clin Invest. 2021;131:e152079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, et al. Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist. Nat Commun. 2022;13:1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain. 2019;142:376–90.

    Article  PubMed  Google Scholar 

  • Lorincz A, Nusser Z. Cell-type-dependent molecular composition of the axon initial segment. J Neurosci. 2008;28:14329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL. Molecular basis of an inherited epilepsy. Neuron. 2002;34:877–84.

    Article  CAS  PubMed  Google Scholar 

  • Männikkö R, et al. Spider toxin inhibits gating pore currents underlying periodic paralysis. Proc Natl Acad Sci U S A. 2018;115:4495–500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 2010;9:413–24.

    Article  CAS  PubMed  Google Scholar 

  • Mantegazza M, Cestèle S, Catterall WA. Sodium channelopathies of skeletal muscle and brain. Physiol Rev. 2021;101:1633–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masala N, et al. Targeting aberrant dendritic integration to treat cognitive comorbidities of epilepsy. bioRxiv 2020.11.23.393694. 2021.

    Google Scholar 

  • Mason ER, Cummins TR. Differential inhibition of human Nav1.2 resurgent and persistent sodium currents by cannabidiol and GS967. Int J Mol Sci. 2020;21:2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattis J, et al. Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome. eLife. 2022;11:e69293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack K, et al. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A. 2013;110:E2724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan K, et al. Beta3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci U S A. 2000;97:2308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myshkin MY, et al. Cell-free expression of sodium channel domains for pharmacology studies. Noncanonical spider toxin binding site in the second voltage-sensing domain of human Nav1.4 channel. Front Pharmacol. 2019;10:953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naylor CE, et al. Molecular basis of ion permeability in a voltage-gated sodium channel. EMBO J. 2016;35:820–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noreng S, Li T, Payandeh J. Structural pharmacology of voltage-gated sodium channels. J Mol Biol. 2021;433:166967.

    Article  CAS  PubMed  Google Scholar 

  • Ogiwara I, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007;27:5903–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohba C, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia. 2014;55:994–1000.

    Article  CAS  PubMed  Google Scholar 

  • Ohmori I, Kahlig KM, Rhodes TH, Wang DW, George AL. Nonfunctional SCN1A is common in severe myoclonic epilepsy of infancy. Epilepsia. 2006;47:1636–42.

    Article  CAS  PubMed  Google Scholar 

  • Osteen JD, et al. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature. 2016;534:494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osteen JD, Sampson K, Iyer V, Julius D, Bosmans F. Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A. 2017;114:6836–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottolini M, Barker BS, Gaykema RP, Meisler MH, Patel MK. Aberrant sodium channel currents and hyperexcitability of medial entorhinal cortex neurons in a mouse model of SCN8A encephalopathy. J Neurosci. 2017;37:7643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Cummins TR. Distinct functional alterations in SCN8A epilepsy mutant channels. J Physiol. 2020;598:381–401.

    Article  CAS  PubMed  Google Scholar 

  • Pan X, et al. Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA. Science. 2019;363:1309–13.

    Google Scholar 

  • Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain. 2016;139:2164–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage-gated sodium channel. Nature. 2011;475:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potet F, Vanoye CG, George AL. Use-dependent block of human cardiac sodium channels by GS967. Mol Pharmacol. 2016;90:52–60.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994;265:1724–8.

    Google Scholar 

  • Rash BG, et al. Gliogenesis in the outer subventricular zone promotes enlargement and gyrification of the primate cerebrum. Proc Natl Acad Sci. 2019;116:7089–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes TH, et al. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J Physiol. 2005;569:433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards KL, et al. Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc Natl Acad Sci U S A. 2018;115:E8077–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosker C, et al. The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the Nav1.6 voltage-dependent sodium channel. Am J Physiol Cell Physiol. 2007;293:C783–9.

    Article  CAS  PubMed  Google Scholar 

  • Rush AM, Dib-Hajj SD, Waxman SG. Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J Physiol. 2005;564:803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadleir LG, et al. Not all SCN1A epileptic encephalopathies are Dravet syndrome. Neurology. 2017;89:1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sait LG, et al. Cannabidiol interactions with voltage-gated sodium channels. eLife. 2020;9:e58593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffer IE, et al. Add-on cannabidiol in patients with Dravet syndrome: results of a long-term open-label extension trial. Epilepsia. 2021;62:2505–17.

    Article  CAS  PubMed  Google Scholar 

  • Segal MM, Douglas AF. Late sodium channel openings underlying epileptiform activity are preferentially diminished by the anticonvulsant phenytoin. J Neurophysiol. 1997;77:3021–34.

    Article  CAS  PubMed  Google Scholar 

  • Shen H, et al. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science. 2017;355:eaal4326.

    Google Scholar 

  • Skluzacek JV, Watts KP, Parsy O, Wical B, Camfield P. Dravet syndrome and parent associations: the IDEA League experience with comorbid conditions, mortality, management, adaptation, and grief. Epilepsia. 2011;52(Suppl 2):95–101.

    Article  PubMed  Google Scholar 

  • Smith RS, et al. Sodium channel SCN3A (NaV1.3) regulation of human cerebral cortical folding and oral motor development. Neuron. 2018;99:905–913.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spratt PWE, et al. The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron. 2019;103:673–685.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spratt PWE, et al. Paradoxical hyperexcitability from NaV1.2 sodium channel loss in neocortical pyramidal cells. Cell Rep. 2021;36:109483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7:15–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun GC, Werkman TR, Battefeld A, Clare JJ, Wadman WJ. Carbamazepine and topiramate modulation of transient and persistent sodium currents studied in HEK293 cells expressing the Nav1.3 α-subunit. Epilepsia. 2007;48:774–82.

    Article  CAS  PubMed  Google Scholar 

  • Tai C, Abe Y, Westenbroek RE, Scheuer T, Catterall WA. Impaired excitability of somatostatin- and parvalbumin-expressing cortical interneurons in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A. 2014;111:E3139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talvenheimo JA, et al. Structure and functional reconstitution of the sodium channel from rat brain. Biophys J. 1984;45:37–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talwar D, Hammer MF. SCN8A epilepsy, developmental encephalopathy, and related disorders. Pediatr Neurol. 2021;122:76–83.

    Article  PubMed  Google Scholar 

  • Tanenhaus A, et al. Cell-selective adeno-associated virus-mediated SCN1A gene regulation therapy rescues mortality and seizure phenotypes in a Dravet syndrome mouse model and is well tolerated in nonhuman primates. Hum Gene Ther. 2022;33:579–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tidball AM, et al. Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain. 2020;143:3025–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto T, et al. Differential binding of tetrodotoxin and its derivatives to voltage-sensitive sodium channel subtypes (Nav1.1 to Nav1.7). Br J Pharmacol. 2017;174:3881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulmschneider MB, et al. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proc Natl Acad Sci U S A. 2013;110:6364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valassina N, et al. Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome. Nat Commun. 2022;13:161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Peet PL, Sandanayake S, Jarrott B, Williams SJ. Discovery of N-aryloxypropylbenzylamines as voltage-gated sodium channel NaV1.2-subtype-selective inhibitors. ChemMedChem. 2019;14:570–82.

    Article  PubMed  Google Scholar 

  • Vanoye CG, Gurnett CA, Holland KD, George AL, Kearney JA. Novel SCN3A variants associated with focal epilepsy in children. Neurobiol Dis. 2014;62:313–22.

    Article  CAS  PubMed  Google Scholar 

  • Veeramah KR, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet. 2012;90:502–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagnon JL, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol Genet. 2017;3:e170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagnon JL, et al. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum Mutat. 2018;39:965–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wengert ER, Patel MK. The role of the persistent sodium current in epilepsy. Epilepsy Curr. 2021;21:40–7.

    Article  PubMed  Google Scholar 

  • Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology. 2019a;158:107699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wengert ER, et al. Biallelic inherited SCN8A variants, a rare cause of SCN8A-related developmental and epileptic encephalopathy. Epilepsia. 2019b;60:2277–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wengert ER, et al. Somatostatin-positive interneurons contribute to seizures in SCN8A epileptic encephalopathy. J Neurosci. 2021;41:9257–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wengert ER, et al. Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet syndrome. Brain Res. 2022;1775:147743.

    Article  CAS  PubMed  Google Scholar 

  • Weuring WJ, et al. NaV1.1 and NaV1.6 selective compounds reduce the behavior phenotype and epileptiform activity in a novel zebrafish model for Dravet syndrome. PLoS One. 2020;15:e0219106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker WRJ, et al. Distribution of voltage-gated sodium channel α-subunit and β-subunit mRNAs in human hippocampal formation, cortex, and cerebellum. J Comp Neurol. 2000;422:123–39.

    Article  CAS  PubMed  Google Scholar 

  • Wilson MJ, et al. μ-Conotoxins that differentially block sodium channels NaV1.1 through 1.8 identify those responsible for action potentials in sciatic nerve. Proc Natl Acad Sci. 2011;108:10302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisedchaisri G, et al. Structural basis for high-affinity trap** of the NaV1.7 channel in its resting state by tarantula toxin. Mol Cell. 2021;81:38–48.e4.

    Article  CAS  PubMed  Google Scholar 

  • Wolff M, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain. 2017;140:1316–36.

    Article  PubMed  Google Scholar 

  • Wolff M, Brunklaus A, Zuberi SM. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia. 2019;60:S59–67.

    Article  PubMed  Google Scholar 

  • Wu YW, et al. Incidence of Dravet syndrome in a US population. Pediatrics. 2015;136:e1310-5.

    Article  PubMed  Google Scholar 

  • Xu H, et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell. 2019;176:702–715.e14.

    Article  CAS  PubMed  Google Scholar 

  • Yamagata T, et al. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol Dis. 2020;141:104954.

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, et al. Structure of the Nav1.4-β1 complex from electric eel. Cell. 2017;170:470–482.e11.

    Article  CAS  PubMed  Google Scholar 

  • Yu FH, et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 2003;23:7577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman T, et al. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol. 2018;83:703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman T, Abou Tayoun A, Goldberg EM. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann Clin Transl Neurol. 2019;6:1445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman T, et al. SCN3A-related neurodevelopmental disorder: a spectrum of epilepsy and brain malformation. Ann Neurol. 2020;88:348–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wengert, E.R., Miralles, R.M., Patel, M.K. (2024). Voltage-Gated Sodium Channels as Drug Targets in Epilepsy-Related Sodium Channelopathies. In: Stephens, G., Stevens, E. (eds) Ion Channels as Targets in Drug Discovery. Springer, Cham. https://doi.org/10.1007/978-3-031-52197-3_4

Download citation

Publish with us

Policies and ethics

Navigation