Biotechnology and Its Position in the Mitigation of Microbial Problems in the Food Industry

  • Chapter
  • First Online:
Microbial Biotechnology in the Food Industry

Abstract

Practically every characteristic of life has been adjoined by biotechnology in recent years. Biotechnology is depicted as the utilization of natural frameworks, including microorganisms or parts delivered by miniature organic entities in modern industrial operations. From the advancement of hybrid plants and hereditarily adjusted illness-safe mutant strains to the development of immunizations, including DNA antibodies, biotechnology has various applications. Food biotechnology is an application of biotechnology that tests the physical, biological, and chemical aspects of food products to preserve them without compromising their nutritive significance. The fermentation process improves protein and fiber digestion, along with micronutrients & it helps to enhance the sensorial profile. There is a meaningful role for biotechnology in the foodstuffs processing area. Biotechnology also aids in the detection of micro-organisms by miscellaneous applications like ELISA, microarray, Biosensors, etc., which are responsible for acute toxicity in foods. Biotechnology can improve the storage stability of food by preventing the growth of undesirable pathogens in food commodities. Various ELISA kits are available which can be employed for the detection and prevention of aflatoxins and other pathogenic contaminants. The unique antimicrobial activity comes from edibles and assortment, with further aspects or strategies proposed in this chapter to ensure food security and quality. New-generation biosensors which offer an analytical approach and save time have been introduced in this chapter. Through biotechnology, non-edible and perishable foods can be transformed into palatable longer-lasting foods with improved nutritious and physicochemical properties. Therefore, this chapter intends to emphasize the position of biotechnology in the mitigation of microbial problems in the edibles processing enterprise. Furthermore, we will examine the potential of emerging technologies in the future as well as their challenges, benefits, and flaws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abelès, F. (1976). Optical properties of very thin films. Thin Solid Films, 34(2), 291–302.

    Google Scholar 

  • Abdelhamid, H. N., & Wu, H. F. (2013). Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. Journal of Materials Chemistry B, 1(32), 3950–3961.

    Google Scholar 

  • Alan, A. C. (2023). Cohabitating with living materials: The application of design fiction to speculate on biological futures. Master’s thesis, Middle East Technical University.

    Google Scholar 

  • Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., & Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arwin, H., Poksinski, M., & Johansen, K. (2004). Total internal reflection ellipsometry: principles and applications. Applied Optics, 43(15), 3028–3036.

    Google Scholar 

  • Auger, S., Ramarao, N., Faille, C., Fouet, A., Aymerich, S., & Gohar, M. (2009). Biofilm formation and cell surface properties among pathogenic and nonpathogenic strains of the Bacillus cereus group. Applied and Environmental Microbiology, 75, 6616–6618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awuchi, C. G., Ondari, E. N., Nwozo, S., Odongo, G. A., Eseoghene, I. J., Twinomuhwezi, H., & Okpala, C. O. R. (2022). Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins, 14(3), 167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awuchi, C. G., Ondari, E. N., Ogbonna, C. U., Upadhyay, A. K., Baran, K., Okpala, C. O. R., & Guiné, R. P. (2021). Mycotoxins affecting animals, foods, humans, and plants: Types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—A revisit. Foods, 10(6), 1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird, R. E., Trigiano, R. N., Windham, G., Williams, P., Kelley, R., Abbas, H. K., & Scruggs, M. L. (2006). Comparison of aflatoxigenic and nonaflatoxigenic isolates of Aspergillus flavus using DNA amplification fingerprinting techniques. Mycopathologia, 161, 93–99.

    Google Scholar 

  • Baleviciute, I., Balevicius, Z., Makaraviciute, A., Ramanaviciene, A., & Ramanavicius, A. (2013). Study of antibody/antigen binding kinetics by total internal reflection ellipsometry. Biosensors and Bioelectronics, 39(1), 170–176.

    Google Scholar 

  • Barkway, C. P., Pocock, R. L., Vrba, V., & Blake, D. P. (2015). Loop-mediated isothermal amplification (LAMP) assays for the species-specific detection of Eimeria that infect chickens. Journal of Visualized Experiments, 96, e52552.

    Google Scholar 

  • Barry‐Ryan, C., & Bourke, P. (2012). Essential oils for the treatment of fruit and vegetables. Decontamination of Fresh and Minimally Processed Produce, 225–246. Portico.

    Google Scholar 

  • Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23, 382–398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burall, L. S., Grim, C. J., & Datta, A. R. (2017). A clade of Listeria monocytogenes serotype 4b variant strains linked to recent listeriosis outbreaks associated with produce from a defined geographic region in the US. PLoS One, 12, e0176912.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, M. Q., Louie, J. W., Feng, D., Zhong, W., & Brandl, M. T. (2016). Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation. Food Microbiology, 57, 81–89.

    Article  PubMed  Google Scholar 

  • Chen, Y., Wang, Z., Shi, Q., Huang, S., Yu, T., Zhang, L., & Yang, H. (2021). Multiplex PCR method for simultaneous detection of five pathogenic bacteria closely related to foodborne diseases. 3 Biotech, 11, 1–8.

    Article  Google Scholar 

  • Chu, F. S. (2019). Mycotoxin analysis: Immunological techniques. In Foodborne disease handbook (2nd ed., pp. 683–714). CRC Press.

    Chapter  Google Scholar 

  • Coulombe Jr., R. (1993). Nonhepatic disposition and effects of aflatoxin B1. p. 89–101. In: Eaton, D.L.; Groopman, J.D., eds. The toxicology of aflatoxins: human health, veterinary and agricultural significance. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Da Silva, J. L., Oreste, E. Q., Dias, D., & Garda-Buffon, J. (2022). Electrochemistry applied to mycotoxin determination in food and beverages. Food Analytical Methods, 16, 541–526.

    Article  Google Scholar 

  • Dey, S., & Nagababu, B. H. (2022). Applications of food colour and bio-preservatives in the food and its effect on the human health. Food Chemistry Advances, 1, 100019.

    Article  Google Scholar 

  • Dhanekar, S. (2020). Smart and intelligent E-nose for sensitive and selective chemical sensing applications. In Smart sensors for environmental and medical applications (1st ed., pp. 149–171). Piscataway.

    Chapter  Google Scholar 

  • Ehling-Schulz, M., Frenzel, E., & Gohar, M. (2015). Food–bacteria interplay: pathometabolism of emetic Bacillus cereus. Frontiers in Microbiology, 6, 704.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Sayed, R. A., Jebur, A. B., Kang, W., El-Esawi, M. A., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: Characteristics, toxicity, and analysis. Journal of Future Foods, 2(2), 91–102.

    Article  Google Scholar 

  • Esheli, M., Thissera, B., El-Seedi, H. R., & Rateb, M. E. (2022). Fungal metabolites in human health and diseases – An overview. Encyclopedia, 2(3), 1590–1601.

    Article  Google Scholar 

  • Espina, L., Condón, S., Pagán, R., & García-Gonzalo, D. (2014). Synergistic effect of orange essential oil or (+)-limonene with heat treatments to inactivate Escherichia coli O157: H7 in orange juice at lower intensities while maintaining hedonic acceptability. Food and Bioprocess Technology, 7, 471–481.

    Google Scholar 

  • Fakruddin, M. D., Sultana, M., Ahmed, M. M., Chowdhury, A., & Choudhury, N. (2013). Multiplex PCR (polymerase chain reaction) assay for detection of E. coli O157:H7, Salmonella sp., Vibrio cholerae and Vibrio parahaemolyticus in spiked shrimps (Penaeus monodon). Pakistan Journal of Biological Sciences, 16(6), 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: An emergent form of bacterial life. Nature Reviews Microbiology, 14, 563–575.

    Article  CAS  PubMed  Google Scholar 

  • Flores-Flores, M. E., & González-Peñas, E. (2017). An LC–MS/MS method for multi-mycotoxin quantification in cow milk. Food Chemistry, 218, 378–385.

    Google Scholar 

  • Geleta, G. S. (2022). A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: An alternative approach to conventional methods. Analytical and Bioanalytical Chemistry, 414(24), 7103–7122.

    Article  CAS  PubMed  Google Scholar 

  • Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., & Cotter, P. D. (2015). The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Frontiers in Microbiology, 6, 1–18.

    Article  Google Scholar 

  • Govaris, A., Botsoglou, E., Sergelidis, D., & Chatzopoulou, P. S. (2011). Antibacterial activity of oregano and thyme essential oils against Listeria monocytogenes and Escherichia coli O157: H7 in feta cheese packaged under modified atmosphere. LWT-Food Science and Technology, 44(4), 1240–1244.

    Google Scholar 

  • Gwak, S. H., Kim, J. H., & Oh, S. W. (2020). How to rapidly and sensitively detect for Escherichia coli O157: H7 and Salmonella Typhimurium in cabbage using filtration, DNA concentration, and real-time PCR after short-term enrichment. LWT, 132, 109840.

    Article  CAS  Google Scholar 

  • Hayouni, E. A., Chraief, I., Abedrabba, M., Bouix, M., Leveau, J. Y., Mohammed, H., & Hamdi, M. (2008). Tunisian Salvia officinalis L. and Schinus molle L. essential oils: Their chemical compositions and their preservative effects against Salmonella inoculated in minced beef meat. International Journal of Food Microbiology, 125(3), 242–251.

    Google Scholar 

  • Ivnitski, D., Abdel-Hamid, I., Atanasov, P., & Wilkins, E. (1999). Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics, 14(7), 599–624.

    Google Scholar 

  • Iwata, T., & Mizutani, Y. (2010). Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance. Optics Express, 18(14), 14480–14487.

    Google Scholar 

  • Jaywant, S. A., & Arif, K. M. (2019). A comprehensive review of microfluidic water quality monitoring sensors. Sensors, 19(21), 4781.

    Google Scholar 

  • Kirthi, A. V., & Chaudhuri, S. (2023). Microbial enzymes: A new approach for contamination management. In Relationship between microbes and the environment for sustainable ecosystem services (3rd ed., pp. 233–241). Elsevier.

    Chapter  Google Scholar 

  • Kumar, A., Mallick, S. P., Singh, D., & Gupta, N. (2022). Advances in bioremediation: Introduction, applications, and limitations. In Biological Approaches to Controlling Pollutants (pp. 1–14). Woodhead Publishing.

    Google Scholar 

  • Lambert, R. J. W., Skandamis, P. N., Coote, P. J., & Nychas, G. J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology, 91(3), 453–462.

    Google Scholar 

  • Leite, M., Freitas, A., Silva, A. S., Barbosa, J., & Ramos, F. (2021). Maize food chain and mycotoxins: A review on occurrence studies. Trends in Food Science and Technology, 115, 307–331.

    Article  CAS  Google Scholar 

  • Liang, L., Zhang, Z., Shen, J., Zhe, K., Wang, Q., Wu, T., ... & Tu, Y. (2014). Theoretical studies on the dynamics of DNA fragment translocation through multilayer graphene nanopores. RSC Advances, 4(92), 50494–50502.

    Google Scholar 

  • Lobato, A., Fernandes, V. C., Pacheco, J. G., Delerue-Matos, C., & Gonçalves, L. M. (2021). Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. Journal of Chromatography A, 1636, 461797.

    Article  CAS  PubMed  Google Scholar 

  • Luo, S., Liu, Y., Guo, Q., Wang, X., Tian, Y., Yang, W., & Chen, Y. (2022). Determination of zearalenone and its derivatives in feed by gas chromatography–mass spectrometry with immunoaffinity column cleanup and isotope dilution. Toxins, 14(11), 764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majed, R., Faille, C., Kallassy, M., & Gohar, M. (2016). Bacillus cereus biofilms—Same, only different. Frontiers in Microbiology, 7, 1054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M., & Herman, L. (2012). Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety, 11, 133–147.

    Article  CAS  Google Scholar 

  • Mata, G. M., & Vanetti, M. C. D. (2012). Comparison of conventional and rapid methods for Salmonella detection in artisanal minas cheese. Journal of Food Research, 1(3), 178.

    Article  Google Scholar 

  • Maurya, V. K., Shakya, A., Bashir, K., Jan, K., & McClements, D. J. (2023). Fortification by design: A rational approach to designing vitamin D delivery systems for foods and beverages. Comprehensive Reviews in Food Science and Food Safety, 22(1), 135–186.

    Article  CAS  PubMed  Google Scholar 

  • Melinte, G., Hosu, O., Cristea, C., Marrazza, G. (2022). DNA sensing technology a useful food scanning tool. TrAC Trends in Analytical Chemistry 116679.

    Google Scholar 

  • Meyer, R. L. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 6, 841.

    Google Scholar 

  • Milillo, S. R., Friedly, E. C., Saldivar, J. C., Muthaiyan, A., O’bryan, C., Crandall, P. G., et al. (2012). A review of the ecology, genomics, and stress response of Listeria innocua and Listeria monocytogenes. Critical Reviews in Food Science and Nutrition, 52, 712–725.

    Article  CAS  PubMed  Google Scholar 

  • Miura, N., & Okuda, S. (2023). Current progress and critical challenges to overcome in the bioinformatics of mass spectrometry-based metaproteomics. Computational and Structural Biotechnology Journal, 21, 1140–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizan, M. F., Jahid, I. K., & Ha, S.-D. (2015). Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology, 49, 41–55.

    Article  CAS  PubMed  Google Scholar 

  • Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science and Technology, 103, 321–332.

    Article  CAS  Google Scholar 

  • Moura, M. A. F. E., Gomes, D. C., & Takahashi, J. A. (2023). Applications of fungi secondary metabolites in the food industry. In M. Carocho, S. A. Heleno, & L. Barros (Eds.), Natural secondary metabolites: From nature, through science, to industry (1st ed., pp. 739–776). Springer.

    Chapter  Google Scholar 

  • Nji, Q. N., Babalola, O. O., & Mwanza, M. (2022). Aflatoxins in maize: Can their occurrence be effectively managed in Africa in the face of climate change and food insecurity? Toxins, 14(8), 574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwankwegu, A. S., Zhang, L., **e, D., Onwosi, C. O., Muhammad, W. I., Odoh, C. K., & Idenyi, J. N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304, 114313.

    Article  CAS  PubMed  Google Scholar 

  • Oh, B., Lee, W., Kim, Y., Lee, W. H., & Choi, J. (2004). Surface plasmon resonance immunosensor using selfassembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology, 111(1), 1–8.

    Google Scholar 

  • Oliveira, I. S., da Silva Junior, A. G., de Andrade, C. A. S., & Oliveira, M. D. L. (2019). Biosensors for early detection of fungi spoilage and toxigenic and mycotoxins in food. Current Opinion in Food Science, 29, 64–79.

    Article  Google Scholar 

  • Ponce, A., Roura, S. I., & Moreira, M. D. R. (2011). Essential oils as biopreservatives: different methods for the technological application in lettuce leaves. Journal of Food Science, 76(1), M34–M40.

    Google Scholar 

  • Popescu, R. G., Rădulescu, A. L., Georgescu, S. E., & Dinischiotu, A. (2022). Aflatoxins in feed: Types, metabolism, health consequences in swine and mitigation strategies. Toxins, 14(12), 853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan, S., & Ananthanarayan, L. (2020). Standardization and validation of a high-performance thin-layer chromatography method for the quantification of aflatoxin B1 and its application in surveillance of contamination level in marketed food commodities from the Mumbai region. JPC–Journal of Planar Chromatography–Modern TLC, 33, 617–630.

    Article  CAS  Google Scholar 

  • Qi, J., Xue, P., Zhang, R., An, Y., Wang, Z., & Li, M. (2023). Error correction for Mueller matrix ellipsometry based on a reference optical path. Applied Optics, 62(1), 260–265.

    Google Scholar 

  • Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L., & Shen, J. (2014). Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 58, 237–241.

    Google Scholar 

  • Rafeeq, H., Afsheen, N., Rafique, S., Arshad, A., Intisar, M., Hussain, A., & Iqbal, H. M. (2023). Genetically engineered microorganisms for environmental remediation. Chemosphere, 310, 136751.

    Article  CAS  PubMed  Google Scholar 

  • Raj, K., & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, 79–85.

    Article  CAS  Google Scholar 

  • Rathod, N. B., Phadke, G. G., Tabanelli, G., Mane, A., Ranveer, R. C., Pagarkar, A., & Ozogul, F. (2021). Recent advances in bio-preservatives impacts of lactic acid bacteria and their metabolites on aquatic food products. Food Bioscience, 44, 101440.

    Article  CAS  Google Scholar 

  • Rothrock, M. J., Davis, M. L., Locatelli, A., Bodie, A., McIntosh, T. G., Donaldson, J. R., et al. (2017). Listeria occurrence in poultry flocks: Detection and potential implications. Frontiers in Veterinary Science, 4, 1–7.

    Article  Google Scholar 

  • Ruan, L., Crickmore, N., Peng, D., & Sun, M. (2015). Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Trends in Microbiology, 23, 341–346.

    Article  CAS  PubMed  Google Scholar 

  • Saleh-Lakha, S., Leon-Velarde, C. G., Chen, S., Lee, S., Shannon, K., Fabri, M., et al. (2017). A study to assess the numbers and prevalence of Bacillus cereus and its toxins in pasteurized fluid milk. Journal of Food Protection, 80, 1085–1089.

    Article  PubMed  Google Scholar 

  • Sannigrahi, S., Kumar, A. S., Mathiyarasu, J., & Suthindhiran, K. (2023). Detection of Escherichia coli in food samples by magnetosome-based biosensor. Biotechnology and Bioprocess Engineering, E28, 152–161.

    Article  Google Scholar 

  • Santos, A. R., Carreiró, F., Freitas, A., Barros, S., Brites, C., Ramos, F., & Sanches Silva, A. (2022). Mycotoxins contamination in rice: Analytical methods, occurrence and detoxification strategies. Toxins, 14(9), 647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shier, W. T. (1992). Sphingosine Analogs: an Emerging New Class of Toxins that Includes the Fumonisins. Journal of Toxicology: Toxin Reviews, 11, 241–257.

    Google Scholar 

  • Silva, S., Teixeira, P., Oliveira, R., & Azeredo, J. (2008). Adhesion to and viability of Listeria monocytogenes on food contact surfaces. Journal of Food Protection, 71, 1379–1385.

    Article  PubMed  Google Scholar 

  • Singh, J., & Mehta, A. (2020). Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Science & Nutrition, 8(5), 2183–2204.

    Article  CAS  Google Scholar 

  • Soares Mateus, A. R., Barros, S., Pena, A., & Sanches Silva, A. (2021). Mycotoxins in pistachios (pistacia vera L.): Methods for determination, occurrence, decontamination. Toxins, 13(10), 682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohrabi, H., Majidi, M. R., Khaki, P., Jahanban-Esfahlan, A., de la Guardia, M., & Mokhtarzadeh, A. (2022). State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1868–1912.

    Article  PubMed  Google Scholar 

  • Starodub, N. F., & Starodub, V. M. (2000). Biosensory: Streams, dosyagnennia and perspective. Ukr Biochem Zhurn, 4–5, 147–163.

    Google Scholar 

  • Stincone, P., Andreazza, R., Demarco, C. F., Afonso, T. F., & Brandelli, A. (2023). Marine bacteria for bioremediation. In T. Encarnação (Ed.), Marine organisms: A solution to environmental pollution? Uses in bioremediation and in biorefinery (1st ed., pp. 147–188). Springer.

    Chapter  Google Scholar 

  • Syamilah, N., Nurul Afifah, S., Effarizah, M. E., & Norlia, M. (2022). Mycotoxins and mycotoxigenic fungi in spices and mixed spices: A review. Food Research, 6(4), 30–46.

    Article  Google Scholar 

  • Thabet, H. M., Nogaim, Q. A., Qasha, A. S., Abdoalaziz, O., & Alnsheme, N. (2014). Evaluation of the effects of some plant derived essential oils on shelf life extension of Labneh. Merit Research Journal of Food Science and Technology, 2(1), 8–14.

    Google Scholar 

  • Triozzi, M., Binetti, M. S., Campanale, C., Uricchio, V. F., & Massarelli, C. (2023). An integrated approach to assess smart passive bioventing as a sustainable strategy for the remediation of a polluted site by persistent organic pollutants. Sustainability, 15(4), 3764.

    Article  CAS  Google Scholar 

  • Tsagkaris, A. S., Nelis, J. L., Ross, G. M. S., Jafari, S., Guercetti, J., Kopper, K., & Hajslova, J. (2019). Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC Trends in Analytical Chemistry, 121, 115688.

    Article  CAS  Google Scholar 

  • Tyagi, A. K., Gottardi, D., Malik, A., & Guerzoni, M. E. (2013). Anti-yeast activity of mentha oil and vapours through in vitro and in vivo (real fruit juices) assays. Food Chemistry, 137(1–4), 108–114.

    Google Scholar 

  • Ultee, A., Bennik, M. H. J., & Moezelaar, R. J. A. E. M. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561–1568.

    Google Scholar 

  • Van Houdt, R., & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109, 1117–1131.

    Article  PubMed  Google Scholar 

  • Vaudreuil, M. A., Duy, S. V., Munoz, G., Furtos, A., & Sauvé, S. (2020). A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS. Talanta, 220, 121407.

    Article  CAS  PubMed  Google Scholar 

  • Vergis, J., Gokulakrishnan, P., Agarwal, R. K., & Kumar, A. (2015). Essential oils as natural food antimicrobial agents: A review. Critical Reviews in Food Science and Nutrition, 55(10), 1320–1323.

    Google Scholar 

  • Vidyadharani, G., Vijaya Bhavadharani, H. K., Sathishnath, P., Ramanathan, S., Sariga, P., Sandhya, A., et al. (2022). Present and pioneer methods of early detection of food borne pathogens. Journal of Food Science and Technology, 59(6), 2087–2107.

    Article  CAS  PubMed  Google Scholar 

  • Vilain, S., Pretorius, J. M., Theron, J., & Brozel, V. S. (2009). DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Applied Environmental Microbiology, 75, 2861–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viter, R., Khranovskyy, V., Starodub, N., Ogorodniichuk, Y., Gevelyuk, S., Gertnere, Z., ... & Ubelis, A. (2014). Application of room temperature photoluminescence from ZnO nanorods for salmonella detection. IEEE Sensors Journal, 14(6), 2028–2034

    Google Scholar 

  • Wild, C. P., & Gong, Y. Y. (2010). Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis, 31(1), 71–82.

    Google Scholar 

  • Winter, G., & Pereg, L. (2019). A review on the relation between soil and mycotoxins: Effect of aflatoxin on field, food and finance. European Journal of Soil Science, 70(4), 882–897.

    Article  Google Scholar 

  • Yadav, A. K., Gattupalli, M., Dashora, K., & Kumar, V. (2023). Key milk adulterants in India and their detection techniques: A review. Food Analytical Methods, 16, 499–514.

    Article  Google Scholar 

  • Yang, C., Song, G., & Lim, W. (2020). Effects of mycotoxin-contaminated feed on farm animals. Journal of Hazardous Materials, 389, 122087.

    Article  CAS  PubMed  Google Scholar 

  • Yli-Mattila, T., Yörü, E., Abbas, A., & Teker, T. (2022). Overview on major mycotoxins accumulated on food and feed. In S. K. Deshmukh (Ed.), Fungal biotechnology prospects and avenues (1st ed., pp. 310–343). CRC Press.

    Chapter  Google Scholar 

  • Zhang, H., Li, B., Liu, Y., Chuan, H., Liu, Y., & **e, P. (2022). Immunoassay technology: Research progress in microcystin-LR detection in water samples. Journal of Hazardous Materials, 424, 127406.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Lin, C. W., Wang, J., & Oh, D. H. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology, 24(3), 297–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rawat, R., Sharma, M., Singh, P. (2024). Biotechnology and Its Position in the Mitigation of Microbial Problems in the Food Industry. In: Ahmad, F., Mohammad, Z.H., Ibrahim, S.A., Zaidi, S. (eds) Microbial Biotechnology in the Food Industry. Springer, Cham. https://doi.org/10.1007/978-3-031-51417-3_5

Download citation

Publish with us

Policies and ethics

Navigation