Neuroblastoma Tumor Microenvironment: Non-Immune Cells and Exosomes

  • Chapter
  • First Online:
Neuroblastoma

Part of the book series: Pediatric Oncology ((PEDIATRICO))

  • 69 Accesses

Abstract

Schwann cells (SC), endothelial cells (EC), pericytes, and cancer-associated fibroblasts (CAF) are non-immune cells present in the tumor microenvironment (TME) of neuroblastoma (NB) tumors. These cells communicate with neuroblastoma (NB) cells through contact-dependent and contact-independent mechanisms which stimulate the production of soluble cytokines and chemokines that contribute to a pro-tumorigenic inflammatory reaction. Their roles in the TME of NB are substantially different and can be anti- as well as pro-tumorigenic. There is recent evidence that although these cells are not part of the immune system, they communicate with immune cells, modulating the immune response and often promoting immune escape. As our knowledge on the contribution of non-immune stromal cells in NB continues to expand, therapeutic approaches targeting these cells are considered. In this chapter, the role of SC, EC, and CAF, their mechanisms of communication with NB cells and immune cells, and recent clinical trials targeting these cells or their activity are reviewed in the context of recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borriello L, Seeger RC, Asgharzadeh S, DeClerck YA. More than the genes, the tumor microenvironment in neuroblastoma. Cancer Lett. 2016;380(1):304–14. https://doi.org/10.1016/j.canlet.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  2. Taxy JB. Electron microscopy in the diagnosis of neuroblastoma. Arch Pathol Lab Med. 1980;104(7):355–60.

    CAS  PubMed  Google Scholar 

  3. Burgues O, Navarro S, Noguera R, Pellin A, Ruiz A, Castel V, et al. Prognostic value of the international neuroblastoma pathology classification in neuroblastoma (Schwannian stroma-poor) and comparison with other prognostic factors: a study of 182 cases from the Spanish neuroblastoma registry. Virchows Arch. 2006;449(4):410–20. https://doi.org/10.1007/s00428-006-0253-y.

    Article  PubMed  Google Scholar 

  4. Rossler J, Breit S, Havers W, Schweigerer L. Vascular endothelial growth factor expression in human neuroblastoma: up-regulation by hypoxia. Int J Cancer. 1999;81(1):113–7.

    Article  CAS  PubMed  Google Scholar 

  5. Zeine R, Salwen HR, Peddinti R, Tian Y, Guerrero L, Yang Q, et al. Presence of cancer-associated fibroblasts inversely correlates with Schwannian stroma in neuroblastoma tumors. Mod Pathol. 2009;22(7):950–8. https://doi.org/10.1038/modpathol.2009.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borriello L, Nakata R, Sheard MA, Fernandez GE, Sposto R, Malvar J, et al. Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res. 2017;77(18):5142–57. https://doi.org/10.1158/0008-5472.can-16-2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mora J, Akram M, Cheung NK, Chen L, Gerald WL. Laser-capture microdissected Schwannian and neuroblastic cells in stage 4 neuroblastomas have the same genetic alterations. Med Pediatr Oncol. 2000;35(6):534–7.

    Article  CAS  PubMed  Google Scholar 

  8. Angelini P, Baruchel S, Marrano P, Irwin MS, Thorner PS. The neuroblastoma and ganglion components of nodular ganglioneuroblastoma are genetically similar: evidence against separate clonal origins. Mod Pathol. 2015;28(2):166–76. https://doi.org/10.1038/modpathol.2014.90.

    Article  CAS  PubMed  Google Scholar 

  9. Pajtler KW, Mahlow E, Odersky A, Lindner S, Stephan H, Bendix I, et al. Neuroblastoma in dialog with its stroma: NTRK1 is a regulator of cellular cross-talk with Schwann cells. Oncotarget. 2014;5(22):11180–92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang D, Rutkowski JL, Brodeur GM, Chou PM, Kwiatkowski JL, Babbo A, et al. Schwann cell-conditioned medium inhibits angiogenesis. Cancer Res. 2000;60(21):5966–71.

    CAS  PubMed  Google Scholar 

  11. Boyineni J, Tanpure S, Gnanamony M, Antony R, Fernandez KS, Lin J, et al. SPARC overexpression combined with radiation retards angiogenesis by suppressing VEGF-A via miR410 in human neuroblastoma cells. Int J Oncol. 2016;49(4):1394–406. https://doi.org/10.3892/ijo.2016.3646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chlenski A, Liu S, Guerrero LJ, Yang Q, Tian Y, Salwen HR, et al. SPARC expression is associated with impaired tumor growth, inhibited angiogenesis and changes in the extracellular matrix. Int J Cancer. 2006;118(2):310–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chlenski A, Guerrero LJ, Peddinti R, Spitz JA, Leonhardt PT, Yang Q, et al. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors. Mol Cancer. 2010;9:138. https://doi.org/10.1186/1476-4598-9-138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res. 2002;62(24):7357–63.

    CAS  PubMed  Google Scholar 

  15. Crawford SE, Stellmach V, Ranalli M, Huang X, Huang L, Volpert O, et al. Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci. 2001;114(Pt 24):4421–8.

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Song L. HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation. Int J Clin Exp Pathol. 2015;8(1):504–10.

    PubMed  PubMed Central  Google Scholar 

  17. Tzekova N, Heinen A, Kury P. Molecules involved in the crosstalk between immune- and peripheral nerve Schwann cells. J Clin Immunol. 2014;34(Suppl 1):S86–104. https://doi.org/10.1007/s10875-014-0015-6.

    Article  CAS  PubMed  Google Scholar 

  18. Pezzolo A, Parodi F, Corrias MV, Cinti R, Gambini C, Pistoia V. Tumor origin of endothelial cells in human neuroblastoma. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(4):376–83. https://doi.org/10.1200/jco.2006.09.0696.

    Article  CAS  Google Scholar 

  19. Jodele S, Chantrain CF, Blavier L, Lutzko C, Crooks GM, Shimada H, et al. The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res. 2005;65(8):3200–8.

    Article  CAS  PubMed  Google Scholar 

  20. Tadeo I, Bueno G, Berbegall AP, Fernandez-Carrobles MM, Castel V, Garcia-Rojo M, et al. Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors. Oncotarget. 2016;7(15):19935–47. https://doi.org/10.18632/oncotarget.7661.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qing G, Skuli N, Mayes PA, Pawel B, Martinez D, Maris JM, et al. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res. 2010;70(24):10351–61. https://doi.org/10.1158/0008-5472.can-10-0740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Romain C, Paul P, Kim KW, Lee S, Qiao J, Chung DH. Targeting Aurora kinase-a downregulates cell proliferation and angiogenesis in neuroblastoma. J Pediatr Surg. 2014;49(1):159–65. https://doi.org/10.1016/j.jpedsurg.2013.09.051.

    Article  PubMed  Google Scholar 

  23. Gorantla B, Bhoopathi P, Chetty C, Gogineni VR, Sailaja GS, Gondi CS, et al. Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma. Angiogenesis. 2013;16(1):85–100. https://doi.org/10.1007/s10456-012-9301-1.

    Article  CAS  PubMed  Google Scholar 

  24. Hernandez SL, Banerjee D, Garcia A, Kangsamaksin T, Cheng WY, Anastassiou D, et al. Notch and VEGF pathways play distinct but complementary roles in tumor angiogenesis. Vasc Cell. 2013;5(1):17. https://doi.org/10.1186/2045-824x-5-17.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Banerjee D, Hernandez SL, Garcia A, Kangsamaksin T, Sbiroli E, Andrews J, et al. Notch suppresses angiogenesis and progression of hepatic metastases. Cancer Res. 2015;75(8):1592–602. https://doi.org/10.1158/0008-5472.can-14-1493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Erdreich-Epstein A, Singh AR, Joshi S, Vega FM, Guo P, Xu J, et al. Association of high microvessel alphavbeta3 and low PTEN with poor outcome in stage 3 neuroblastoma: rationale for using first in class dual PI3K/BRD4 inhibitor, SF1126. Oncotarget. 2017;8(32):52193–210. https://doi.org/10.18632/oncotarget.13386.

    Article  PubMed  Google Scholar 

  27. Asgharzadeh S, Salo JA, Ji L, Oberthuer A, Fischer M, Berthold F, et al. Clinical significance of tumor-associated inflammatory cells in metastatic neuroblastoma. J Clin Oncol. 2012;30(28):3525–32. https://doi.org/10.1200/JCO.2011.40.9169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abramsson A, Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest. 2003;112(8):1142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 2004;64(5):1675–86.

    Article  CAS  PubMed  Google Scholar 

  30. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 2009;4(4):e4992.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell. 2018;33:463. https://doi.org/10.1016/j.ccell.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  32. Von Luttichau I, Notohamiprodjo M, Wechselberger A, Peters C, Henger A, Seliger C, et al. Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev. 2005;14(3):329–36. https://doi.org/10.1089/scd.2005.14.329.

    Article  Google Scholar 

  33. Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 2006;24(4):1030–41. https://doi.org/10.1634/stemcells.2005-0319.

    Article  CAS  PubMed  Google Scholar 

  34. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007;101(1):135–46. https://doi.org/10.1002/jcb.21172.

    Article  CAS  PubMed  Google Scholar 

  35. Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15(10):730–8.

    Article  CAS  PubMed  Google Scholar 

  36. Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, et al. Mesenchymal stem cells: mechanisms of immunomodulation and homing. Cell Transplant. 2010;19(6):667–79. https://doi.org/10.3727/096368910X508762.

    Article  PubMed  Google Scholar 

  37. Silverman AM, Nakata R, Shimada H, Sposto R, DeClerck YA. A galectin-3-dependent pathway upregulates interleukin-6 in the microenvironment of human neuroblastoma. Cancer Res. 2012;72(9):2228–38.

    Article  CAS  PubMed  Google Scholar 

  38. Nakata R, Shimada H, Fernandez GE, Fanter R, Fabbri M, Malvar J, et al. Contribution of neuroblastoma-derived exosomes to the production of pro-tumorigenic signals by bone marrow mesenchymal stromal cells. J Extracell Vesicles. 2017;6(1):1332941. https://doi.org/10.1080/20013078.2017.1332941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ara T, Nakata R, Sheard MA, Shimada H, Buettner R, Groshen SG, et al. Critical role of STAT3 in IL-6-mediated drug resistance in human neuroblastoma. Cancer Res. 2013;73(13):3852–64. https://doi.org/10.1158/0008-5472.CAN-12-2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lanza C, Morando S, Voci A, Canesi L, Principato MC, Serpero LD, et al. Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. J Neurochem. 2009;110(5):1674–84.

    Article  CAS  PubMed  Google Scholar 

  41. Sohara Y, Shimada H, Minkin C, Erdreich-Epstein A, Nolta JA, DeClerck YA. Bone marrow mesenchymal stem cells provide an alternate pathway of osteoclast activation and bone destruction by cancer cells. Cancer Res. 2005;65(4):1129–35.

    Article  CAS  PubMed  Google Scholar 

  42. Ma M, Ye JY, Deng R, Dee CM, Chan GC. Mesenchymal stromal cells may enhance metastasis of neuroblastoma via SDF-1/CXCR4 and SDF-1/CXCR7 signaling. Cancer Lett. 2011;312(1):1–10. https://doi.org/10.1016/j.canlet.2011.06.028.

    Article  CAS  PubMed  Google Scholar 

  43. Muhlethaler-Mottet A, Liberman J, Ascencao K, Flahaut M, Balmas Bourloud K, Yan P, et al. The CXCR4/CXCR7/CXCL12 axis is involved in a secondary but complex control of neuroblastoma metastatic cell homing. PLoS One. 2015;10(5):e0125616. https://doi.org/10.1371/journal.pone.0125616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bianchi G, Morandi F, Cilli M, Daga A, Bocelli-Tyndall C, Gambini C, et al. Close interactions between mesenchymal stem cells and neuroblastoma cell lines lead to tumor growth inhibition. PLoS One. 2012;7(10):e48654. https://doi.org/10.1371/journal.pone.0048654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen JI, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112(26):8070–5. https://doi.org/10.1073/pnas.1424355112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hashimoto O, Yoshida M, Koma YI, Yanai T, Hasegawa D, Kosaka Y, et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol. 2016;240:211. https://doi.org/10.1002/path.4769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang R, Swick AG. Identification and characterization of a leptin-responsive neuroblastoma cell line. Biochem Biophys Res Commun. 2009;379(4):835–9. https://doi.org/10.1016/j.bbrc.2008.12.157.

    Article  CAS  PubMed  Google Scholar 

  48. Russo VC, Metaxas S, Kobayashi K, Harris M, Werther GA. Antiapoptotic effects of leptin in human neuroblastoma cells. Endocrinology. 2004;145(9):4103–12. https://doi.org/10.1210/en.2003-1767.

    Article  CAS  PubMed  Google Scholar 

  49. Antonyak MA, Cerione RA. Microvesicles as mediators of intercellular communication in cancer. Methods Mol Biol. 2014;1165:147–73. https://doi.org/10.1007/978-1-4939-0856-1_11.

    Article  CAS  PubMed  Google Scholar 

  50. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    Article  CAS  PubMed  Google Scholar 

  51. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913. https://doi.org/10.3402/jev.v3.26913.

    Article  PubMed  Google Scholar 

  52. Kowal J, Tkach M, Thery C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116–25. https://doi.org/10.1016/j.ceb.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  53. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  54. Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, et al. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One. 2013;8(9):e75054. https://doi.org/10.1371/journal.pone.0075054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Colletti M, Petretto A, Galardi A, Di Paolo V, Tomao L, Lavarello C, et al. Proteomic analysis of neuroblastoma-derived exosomes: new insights into a metastatic signature. Proteomics. 2017;17:23–4. https://doi.org/10.1002/pmic.201600430.

    Article  CAS  Google Scholar 

  56. Haug BH, Hald OH, Utnes P, Roth SA, Lokke C, Flaegstad T, et al. Exosome-like extracellular vesicles from MYCN-amplified neuroblastoma cells contain oncogenic miRNAs. Anticancer Res. 2015;35(5):2521–30.

    CAS  PubMed  Google Scholar 

  57. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst. 2015;107(7):djv135. https://doi.org/10.1093/jnci/djv135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Millan NC, Poveda MJ, Cruz O, Mora J. Safety of bevacizumab in patients younger than 4 years of age. Clin Transl Oncol. 2016;18(5):464–8. https://doi.org/10.1007/s12094-015-1389-5.

    Article  CAS  PubMed  Google Scholar 

  59. Modak S, Kushner BH, Basu E, Roberts SS, Cheung NK. Combination of bevacizumab, irinotecan, and temozolomide for refractory or relapsed neuroblastoma: results of a phase II study. Pediatr Blood Cancer. 2017;64(8):1. https://doi.org/10.1002/pbc.26448.

    Article  CAS  Google Scholar 

  60. Bocca P, Carlo ED, Caruana I, Emionite L, Cilli M, De Angelis B, et al. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Onco Targets Ther. 2017;7(1):e1378843. https://doi.org/10.1080/2162402x.2017.1378843.

    Article  CAS  Google Scholar 

  61. Feng J, Tang L. SPARC in tumor pathophysiology and as a potential therapeutic target. Curr Pharm Des. 2014;20(39):6182–90.

    Article  CAS  PubMed  Google Scholar 

  62. Hadjidaniel MD, Muthugounder S, Hung LT, Sheard MA, Shirinbak S, Chan RY, et al. Tumor-associated macrophages promote neuroblastoma via STAT3 phosphorylation and up-regulation of c-MYC. Oncotarget. 2017;8(53):91516–29. https://doi.org/10.18632/oncotarget.21066.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yang F, Jove V, Buettner R, **n H, Wu J, Wang Y, et al. Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biol Ther. 2012;13(7):534.

    Article  CAS  PubMed  Google Scholar 

  64. Chai H, Luo AZ, Weerasinghe P, Brown RE. Sorafenib downregulates ERK/Akt and STAT3 survival pathways and induces apoptosis in a human neuroblastoma cell line. Int J Clin Exp Pathol. 2010;3(4):408–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kakodkar NC, Peddinti RR, Tian Y, Guerrero LJ, Chlenski A, Yang Q, et al. Sorafenib inhibits neuroblastoma cell proliferation and signaling, blocks angiogenesis, and impairs tumor growth. Pediatr Blood Cancer. 2012;59(4):642–7. https://doi.org/10.1002/pbc.24004.

    Article  PubMed  Google Scholar 

  66. Okada K, Nakano Y, Yamasaki K, Nitani C, Fujisaki H, Hara J. Sorafenib treatment in children with relapsed and refractory neuroblastoma: an experience of four cases. Cancer Med. 2016;5(8):1947–9. https://doi.org/10.1002/cam4.784.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Loh ML, Tasian SK, Rabin KR, Brown P, Magoon D, Reid JM, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a children’s oncology group phase 1 consortium study (ADVL1011). Pediatr Blood Cancer. 2015;62(10):1717–24. https://doi.org/10.1002/pbc.25575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vennepureddy A, Thumallapally N, Motilal Nehru V, Atallah JP, Terjanian T. Novel drugs and combination therapies for the treatment of metastatic melanoma. J Clin Med Res. 2016;8(2):63–75. https://doi.org/10.14740/jocmr2424w.

    Article  PubMed  Google Scholar 

  69. Berthold F, Homberg M, Proleskovskaya I, Mazanek P, Belogurova M, Ernst A, et al. Metronomic therapy has low toxicity and is as effective as current standard treatment for recurrent high-risk neuroblastoma. Pediatr Hematol Oncol. 2017;34(5):308–19. https://doi.org/10.1080/08880018.2017.1373314.

    Article  PubMed  Google Scholar 

  70. Russell HV, Groshen SG, Ara T, DeClerck YA, Hawkins R, Jackson HA, et al. A phase I study of zoledronic acid and low-dose cyclophosphamide in recurrent/refractory neuroblastoma: a new approaches to neuroblastoma therapy (NANT) study. Pediatr Blood Cancer. 2011;57(2):275–82. https://doi.org/10.1002/pbc.22821.

    Article  PubMed  Google Scholar 

  71. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9(5):1639–47.

    CAS  PubMed  Google Scholar 

  72. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E. Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res. 2005;65(23):11156–63. https://doi.org/10.1158/0008-5472.can-05-2805.

    Article  CAS  PubMed  Google Scholar 

  73. Wang LC, Lo A, Scholler J, Sun J, Majumdar RS, Kapoor V, et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol Res. 2014;2(2):154–66. https://doi.org/10.1158/2326-6066.cir-13-0027.

    Article  CAS  PubMed  Google Scholar 

  74. Kakarla S, Chow KK, Mata M, Shaffer DR, Song XT, Wu MF, et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol Ther. 2013;21(8):1611–20. https://doi.org/10.1038/mt.2013.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Reports. 2017;8(6):1714–26. https://doi.org/10.1016/j.stemcr.2017.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves A. DeClerck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borriello, L., Blavier, L., DeClerck, Y.A. (2024). Neuroblastoma Tumor Microenvironment: Non-Immune Cells and Exosomes. In: Asgharzadeh, S., Westermann, F. (eds) Neuroblastoma. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-51292-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-51292-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-51291-9

  • Online ISBN: 978-3-031-51292-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation