Application of Somaclonal Variation in Crop Improvements

  • Chapter
  • First Online:
Plant Mutagenesis

Abstract

Advances in tissue culture methods have made the micropropagation of plants a viable option to regenerate plantlets in large quantities, which usually runs for commercial-level propagation. A diverse range of methods is readily usable for application on plants. Clonal propagations as well as the protection of superior genotypes that have been selected for efficiency necessitate genetic stability and uniformity among plantlets. The tissue culture of plants sometimes entails the emergence of genetic dissimilarities between explants, i.e. somaclonal variants which result from mutated genes or modifications in epigenetics. The restoration of in vitro genetic variability can lead to subtle somatic cell variability. Thus, it is crucial to ensure genetic homogeneity among in vitro-raised plantlets at a preliminary phase. The genetic stability of in vitro-made progenies can be studied through morpho-physiological, physiochemical, cytogenetic, and DNA-based molecular techniques. Phylogenetic analysis variance may be a significant matter in any micropropagation plan, whereby propagating true-to-type plant materials is prioritized. Somaclonal variation, on the other hand, generates genotypic lines via new, distinct tools that facilitate the emergence of variation in plants. This is especially important in the case of difficult-to-breed species or plants with limited genetic diversity. The effects of somaclonal variation can be manifested within relatively short timeframes and without requiring sophisticated technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboulila AA, Galal OA, El-Samahy M (2018) Enhancement of somaclonal variations and genetic diversity using graphite nanoparticles (GtNPs) in sweet potato plants. Afr J Biotech 17(27):847–855

    Article  CAS  Google Scholar 

  • Ahmed MS, Gardezi DA, Batley J, Hayashi S, Zander M, Javid A, Iqbal MZ et al. (2019) Somaclonal variations for red rot and sugarcane mosaic virus resistance and candidate genes integrity assessment in somaclones of selected sugarcane varieties (Saccharum officinarum L.). Pakistan J Agricult Sci 56(1):15–27

    Google Scholar 

  • Akhila A (2009) Essential oil-bearing grasses: the genus Cymbopogon. CRC Press

    Book  Google Scholar 

  • Alfalahi AO, Hussein ZT, Khalofah A, Sadder MT, Qasem JR, Al-Khayri JM, Jain SM et al. (2022) Epigenetic variation as a new plant breeding tool: a review. J King Saud Univ Sci 102302

    Google Scholar 

  • Alizadeh M, Krishna H, Eftekhari M, Modareskia M, Modareskia M (2015) Assessment of clonal fidelity in micropropagated horticultural plants

    Google Scholar 

  • Almehemdi AF (2022) Epigenetic variation as a new plant breeding tool: a review

    Google Scholar 

  • Aloysius S, Purwantoro A, Dewi K, Semiarti E (2017) Improvement of genetic variability in seedlings of Spathoglottis plicata orchids through X-ray irradiation. Biodivers J Biol Divers 18(1)

    Google Scholar 

  • Alves E, Ballesteros I, Linacero R, Vazquez A (2005) RYS1, a foldback transposon, is activated by tissue culture and shows preferential insertion points into the rye genome. Theor Appl Genet 111:431–436

    Article  CAS  Google Scholar 

  • Anami SE, Mgutu AJ, Taracha C, Coussens G, Karimi M, Hilson P, Van Lijsebettens M et al (2010) Somatic embryogenesis and plant regeneration of tropical maize genotypes. Plant Cell Tissue Organ Cult (PCTOC) 102:285–295

    Article  CAS  Google Scholar 

  • Anil VS, Lobo S, Bennur S (2018) Somaclonal variations for crop improvement: selection for disease resistant variants in vitro. Plant Sci Today 5(2):44–54

    Article  CAS  Google Scholar 

  • Aremu AO, Kulkarni MG, Bairu MW, Finnie JF, Van Staden J (2012) Growth stimulation effects of smoke-water and vermicompost leachate on greenhouse grown-tissue-cultured ‘Williams’ bananas. Plant Growth Regul 66:111–118

    Article  CAS  Google Scholar 

  • Azizi SA, Farahani F, Sheidai M (2022) Somaclonal variation in pomegranate (Punica granatum L.): ISSR and cytological evidences. Genetika 54(1):207–217

    Google Scholar 

  • Barakat M, El-Sammak H (2011) In vitro mutagenesis, plant regeneration and characterization of mutants via rapd analysis in Baby’s breath ‘Gypsophila paniculata L.’. Aust J Crop Sci 5(2):214–222

    Google Scholar 

  • Barret P, Brinkman M, Beckert M (2006) A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. Genome 49(11):1399–1407

    Article  CAS  Google Scholar 

  • Bayati E, Gomarian M, Mirzaie Nodoushan H, Changizi M, Khaghani S (2021) Assessment some morphological and nutritional characteristics of a promising potato genotype, produced from somaclonal variation, compared with its parental cultivar. Crop Biotechnol 11(35):47–61

    Google Scholar 

  • Bebeli P, Kaltsikes P, Karp A (1993a) Field evaluation of somaclonal variation in rye lines differing in telomeric heterochromatin. J Genet Breed 47(1):15–22

    Google Scholar 

  • Bebeli P, Kaltsikes P, Karp A (1993b) Field evaluation of somaclonal variation in triticale lines differing in telomeric heterochromatin. J Genet Breed 47(3):249–257

    Google Scholar 

  • Bednarek PT, Orłowska R (2020) Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell Tissue Organ Cult (PCTOC) 140(2):245–257

    Google Scholar 

  • Bello-Bello JJ, Iglesias-Andreu LG, Avilés-Vinas SA, Gómez-Uc E, Canto-Flick A, Santana-Buzzy N (2014) Somaclonal variation in habanero pepper (Capsicum chinense Jacq.) as assessed ISSR molecular markers. HortScience 49(4):481–485

    Google Scholar 

  • Bhat S, Jadhav A, Pawar B, Kale A, Chimote V, Pawar S (2013) In vitro shoot organogenesis and plantlet regeneration in brinjal (Solanum melongena L.). The Bioscan 8(3):821–823

    Google Scholar 

  • Bhojwani SS, Dantu PK, Bhojwani SS, Dantu PK (2013) Somaclonal variation. In: Plant tissue culture: an introductory text, pp 141–154

    Google Scholar 

  • Bidabadi SS, Jain SM (2020) Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants 9(6):702

    Article  CAS  Google Scholar 

  • Bidabadi SS, Meon S, Wahab Z, Subramaniam S, Mahmood M (2012) Induced mutations for enhancing variability of banana (Musa spp.) shoot tip cultures using ethyl methanesulphonate (EMS). Aust J Crop Sci 6(3):391–401

    Google Scholar 

  • Caboni E, Lauri P, Damiano C, D'Angeli S (1999) Somaclonal variation induced by adventitious shoot regeneration in pear and apple. In: International symposium on methods and markers for quality assurance in micropropagation, vol 530, pp 195–202

    Google Scholar 

  • Cavallini A, Lupi M (1987) Cytological study of callus and regenerated plants of sunflower (Helianthus annuus L.). Plant Breed 99(3):203–238

    Google Scholar 

  • Chen J, Wei X (2018) Thidiazuron in micropropagation of aroid plants. In: Thidiazuron: from urea derivative to plant growth regulator, pp 95–113

    Google Scholar 

  • Cheng M, Hsi DC, Phillips GC (1992) In vitro regeneration of valencia-type peanut (Arachis hypogaea L.) from cultured petiolules, epicotyl sections and other seedling explants. Peanut Sci 19(2):82–87

    Google Scholar 

  • Corrêa TR, Motoike SY, de Souza Andrade AP, Coser SM, Queiroz V, Granja MMC, Caetano DDN et al. (2016) Accelerated in vitro propagation of elite oil palm genotypes (Elaeis guineensis Jacq.) by substituting cytokinin with putrescine. Afr J Biotechnol 15(50):2767–2775

    Google Scholar 

  • Cullis CA (2018) The environment as an active generator of adaptive genomic variation. In: Plant responses to environmental stresses. Routledge, pp 149–160

    Google Scholar 

  • De Campos Vidal B, Mello M, Illg R (1993) Chromosome number and DNA content in cells of a biotechnologically selected somaclone of garlic (Allium sativum L.). Revista Brasileira De Genetica 16:347–347

    Google Scholar 

  • De Oliveira ML, Thomson JG, Stover E (2016) High-efficiency propagation of mature ‘Washington Navel’orange and juvenile ‘Carrizo’citrange using axillary shoot proliferation. HortTechnology 26(3):278–286

    Article  Google Scholar 

  • Dev R, Singh S, Dayal V, Kumar K, Singh T (2019) Standardization of in vitro hardening strategies for tissue cultured wine grape (Vitis vinifera L) genotypes. Int J Curr Microbiol App Sci 8(2):2108–2117

    Article  CAS  Google Scholar 

  • Devi AR, Raj NM (2019) Evaluation of Kaempferia galanga L. morphotypes and its chemical markers. J Pharmacogn Phytochem 8(5):1554–1558

    Google Scholar 

  • Dey A, Nongdam P, Nandy S, Mukherjee S, Mukherjee A, Tikendra L, Hazra AK et al (2021) Polyamine elicited aristolochic acid production in in vitro clonally fidel Aristolochia indica L.: an ISSR and RAPD markers and HPTLC based study. S Afr J Bot 140:326–335

    Article  CAS  Google Scholar 

  • Dong X, Guan Y, Zhang Z, Li H (2022) miR390-tasiRNA3-ARF4 pathway is involved in regulating flowering time in woodland strawberry. Plant Cell Rep 1–14

    Google Scholar 

  • Duta-Cornescu G, Constantin N, Pojoga D-M, Nicuta D, Simon-Gruita A (2023) Somaclonal variation—advantage or disadvantage in micropropagation of the medicinal plants. Int J Mol Sci 24(1):838

    Article  CAS  Google Scholar 

  • Ehsanpour AA, Nejati Z (2013) Effect of nanosilver on potato plant growth and protoplast viability. Biol Lett 50(1):35–43

    Article  Google Scholar 

  • Farrokhzad Y, Babaei A, Yadollahi A, Kashkooli AB, Mokhtassi-Bidgoli A, Hesami S (2022) In vitro photomorphogenesis, plant growth regulators, melatonin content, and DNA methylation under various wavelengths of light in Phalaenopsis amabilis. Plant Cell Tissue Organ Cult (PCTOC) 149(3):535–548

    Google Scholar 

  • Galindo-González L, Mhiri C, Deyholos MK, Grandbastien M-A (2017) LTR-retrotransposons in plants: engines of evolution. Gene 626:14–25

    Article  Google Scholar 

  • Gharari Z, Sharafi A, Bagheri K, Yazdinezhad A, Bijani S (2019) In vitro regeneration and secondary metabolites of Viola caspia subsp. sylvestrioides Marcussen. BioTechnologia. J Biotechnol Comput Biol Bionanotechnol 100(4)

    Google Scholar 

  • Griesbach R (1989) Selection of a dwarf Hemerocallis through tissue culture. HortScience 24(6):1027–1028

    Article  Google Scholar 

  • Hayami N, Yamamoto YY (2021) Primary metabolism and transcriptional regulation in higher plants. Rev Agricult Sci 9:117–127

    Article  Google Scholar 

  • Horáček J, Švábová L, Šarhanová P, Lebeda A (2013) Variability for resistance to Fusarium solani culture filtrate and fusaric acid among somaclones in pea. Biol Plant 57(1):133–138

    Article  Google Scholar 

  • Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M et al (2009) Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 93(3):274–281

    Article  CAS  Google Scholar 

  • Iuliana C, Cerasela P (2014) The effect of the ultraviolet radiation on the somaclonal variability for Solanum tuberosum. Rom Biotechnol Lett 19(3):9339–9344

    CAS  Google Scholar 

  • Joel AJ (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19(3):379–387

    Google Scholar 

  • Kaity A, Drew R, Ashmore S (2013) Genetic and epigenetic integrity assessment of acclimatised papaya plants regenerated directly from shoot-tips following short-and long-term cryopreservation. Plant Cell Tissue Organ Cult (PCTOC) 112:75–86

    Article  CAS  Google Scholar 

  • Kapoor B, Kanwar K, Sharma P, Sharma R, Thakur K (2019) In-vitro propagation and genetic stability analysis of Swertia chirayita: an endangered high-value medicinal plant of Himalayas. Med Plants-Int J Phytomed Relat Ind 11(3):328–337

    Google Scholar 

  • Karim R, Nuruzzaman M, Khalid N, Harikrishna J (2016) Importance of DNA and histone methylation in in vitro plant propagation for crop improvement: a review. Ann Appl Biol 169(1):1–16

    Article  CAS  Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302

    Article  Google Scholar 

  • Kerdsuwan S (2016) Proliferation of embryogenic callus different culture systems, direct somatic embryo formation from seedling roots of oil palm and assessment of somaclonal variation using simple sequence repeat (SSR) technique. Prince of Songkla University

    Google Scholar 

  • Khan EU, Fu X-Z, Wang J, Fan Q-J, Huang X-S, Zhang G-N, Shi J et al (2009) Regeneration and characterization of plants derived from leaf in vitro culture of two sweet orange (Citrus sinensis (L.) Osbeck) cultivars. Sci Horticult 120(1):70–76

    Google Scholar 

  • Khan MS, Ahmad D, Adnan M, Khan MA (2014) The effect of somaclonal variation on salt tolerance and glycoalkaloid content of potato tubers. Aust J Crop Sci 8(12):1597–1606

    Google Scholar 

  • Khiabani BN (2022) In vitro based mass-screening technique for early selection of banana mutants resistant to fusarium wilt. In: Efficient screening techniques to identify mutants with TR4 resistance in banana, vol 47

    Google Scholar 

  • Kocot D, Nowak B, Sitek E, Starzyńska-Janiszewska A, Mitka J (2022) In vitro shoot regeneration from organogenic callus culture and rooting of Carpathian endemic Aconitum bucovinense Zapał. Plant Cell Tissue Organ Cult (PCTOC) 151(1):177–187

    Google Scholar 

  • Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:1–18

    Google Scholar 

  • Kulkarni S, Ravindra N, Srinivas K, Kulkarni R (2014) In vitro chemical mutagenesis in exclusively vegetatively-propagated rose-scented geranium (Pelargonium spp.). J Horticult Sci Biotechnol 89(2):173–178

    Google Scholar 

  • Kumar N (2022) Biotechnology and crop improvement: tissue culture and transgenic approaches. CRC Press

    Google Scholar 

  • Kumar T, Singh RS, Kumar S, Pal AK (2019) Molecular markers for genetic fidelity assay of tissue cultured crops

    Google Scholar 

  • Kumari S, Sarika K, Kumar DB (2019) Exploitation of somaclonal variations in vegetable crop improvement-A Review. Think India J 22(30):591–608

    Google Scholar 

  • Ładyżyński M, Burza W, Malepszy S (2002) Relationship between somaclonal variation and type of culture in cucumber. Euphytica 125:349–356

    Article  Google Scholar 

  • Lamo K, Bhat DJ, Kour K, Solanki SPS (2017) Mutation studies in fruit crops: a review. Int J Curr Microbiol Appl Sci 6(12):3620–3633

    Article  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol 39(1):413–437

    Article  Google Scholar 

  • Lestari EG (2019) Combination of somaclonal variation and mutagenesis for crop improvement

    Google Scholar 

  • Leva A, Petruccelli R, Rinaldi L (2012) Somaclonal variation in tissue culture: a case study with olive. Recent Adv Plant in Vitro Cult 7:123–150

    Google Scholar 

  • Li H, Zhang Z, Huang F, Chang L, Ma Y (2009) MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria× ananassa Duch.) plants. Plant Cell Rep 28:891–902

    Article  CAS  Google Scholar 

  • Li H, Zhao X, Dai H, Wu W, Mao W, Zhang Z (2012) Tissue culture responsive microRNAs in strawberry. Plant Mol Biol Rep 30:1047–1054

    Article  CAS  Google Scholar 

  • Liang Y, Bai X, Xu X, Xu H, Wang J, Pan P (2022) Direct in vitro organogenesis from sprouted seeds of a highly economical and ecological valued tree, Korean pine. Plant Cell Tissue Organ Cult (PCTOC) 148:197–207

    Article  CAS  Google Scholar 

  • Liberatore CM, Rodolfi M, Beghè D, Fabbri A, Ganino T, Chiancone B (2020) In vitro leaf-derived organogenesis and somaclonal variant detection in Humulus lupulus L. In Vitro Cell Dev Biol Plant 56:865–874

    Article  CAS  Google Scholar 

  • Lisch D (2012) Regulation of transposable elements in maize. Curr Opin Plant Biol 15(5):511–516

    Article  CAS  Google Scholar 

  • Loyola-Vargas VM, Ochoa-Alejo N (2018) An introduction to plant tissue culture: advances and perspectives. Plant Cell Cult Protoc 3–13

    Google Scholar 

  • Lu Y, Zhang X, Pu J, Qi Y, **e Y (2011) Molecular assessment of genetic identity and genetic stability in banana cultivars (Musa spp.) from China using ISSR markers. Aust J Crop Sci 5(1):25–31

    Google Scholar 

  • Lucia G, Castiglione MR, Turrini A, Ronchi VN, Geri C (2011) Cytogenetic and histological approach for early detection of “mantled” somaclonal variants of oil palm regenerated by somatic embryogenesis: first results on the characterization of regeneration system. Caryologia 64(2):223–234

    Article  Google Scholar 

  • Mafakheri M, Kordrostami M, Rahimi M, Matthews PD (2020) Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica 216:1–19

    Article  Google Scholar 

  • Malik MQ, Mujib A, Gulzar B, Zafar N, Syeed R, Mamgain J, Ejaz B (2020) Genome size analysis of field grown and somatic embryo regenerated plants in Allium sativum L. J Appl Genet 61:25–35

    Article  CAS  Google Scholar 

  • Manchanda P, Kaur A, Gosal SS (2018) Somaclonal variation for sugarcane improvement. In: Biotechnologies of crop improvement, volume 1: cellular approaches, pp 299–326

    Google Scholar 

  • Martínez-Velasco I, Arzate-Fernández AM (2022) Analysis of the somaclonal variation in two in vitro regenerated agave species†[análisis de la variación somaclonal en dos especies de agave regeneradas in vitro]. Trop Subtrop Agroecosyst 25:050

    Google Scholar 

  • Matsuda S, Sato M, Ohno S, Yang S-J, Doi M, Hosokawa M (2014) Cutting leaves and plant growth regulator application enhance somaclonal variation induced by transposition of VGs1 of Saintpaulia. J Jpn Soc Horticult Sci 83(4):308–316

    Article  CAS  Google Scholar 

  • Mayoli RN, Isutsa DK, Nyende AB (2019) A protocol for regenerating genetically stable coffee (Coffea arabica L.) plantlets through direct somatic embryogenesis. Int J Dev Sus 8:645–656

    Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62(11):3713–3725

    Article  CAS  Google Scholar 

  • Miler N, Zalewska M (2014) Somaclonal variation of chrysanthemum propagated in vitro from different explants types. Acta Sci Polonorum Hortorum Cultus 13(2):69–82

    Google Scholar 

  • Minerva G, Kumar S (2013) Micropropagation of gerbera (Gerbera jamesonii Bolus). In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Methods Mol Biol 994:305–316

    Google Scholar 

  • Morais-Lino LS, Santos-Serejo JA, Amorim EP, de Santana JRF, Pasqual M, de Oliveira e Silva S (2016) Somatic embryogenesis, cell suspension, and genetic stability of banana cultivars. In Vitro Cell Dev Biol Plant 52:99–106

    Google Scholar 

  • Morrison RA, Evans DA, Fan Z (2013) Haploid plants from tissue culture. Plant Genet Eng 17:53

    Google Scholar 

  • Muhaimin A, Aziz MA, Camellia N, Hakiman M (2020) In vitro mutagenesis using bio-beam irradiation on in vitro culture of Cavendish banana cultivar (Musa acuminata Colla) explants. Res Crops 21(1):99–105

    Google Scholar 

  • Munshi A, Ahuja Y, Bahadur B (2015) Epigenetic mechanisms in plants: an overview. In: Plant biology and biotechnology: volume II: plant genomics and biotechnology, pp 265–278

    Google Scholar 

  • Murti RH, Kim HY, Yeoung YR (2013) Effectiveness of gamma ray irradiation and ethyl methane sulphonate on in vitro mutagenesis of strawberry. Afr J Biotechnol 12(30)

    Google Scholar 

  • Nas MN, Mutlu N, Read PE (2004) Random amplified polymorphic DNA (RAPD) analysis of long-term cultured hybrid hazelnut. HortScience 39(5):1079–1082

    Article  CAS  Google Scholar 

  • Naseer S, Mahmood T (2014) Tissue culture and genetic analysis of somaclonal variations of Solanum melongena L. cv. Nirrala. Open Life Sci 9(12):1182–1195

    Google Scholar 

  • Nivas SK, Souza LD (2014) Genetic fidelity in micropropagated plantlets of Anacardium occidentale L. (Cashew) an important fruit tree. Int J Sci Res 3:2142–2146

    Google Scholar 

  • Noguera MM, Porri A, Werle IS, Heiser J, Brändle F, Lerchl J, Murphy B et al (2022) Involvement of glutamine synthetase 2 (GS2) amplification and overexpression in Amaranthus palmeri resistance to glufosinate. Planta 256(3):57

    Article  CAS  Google Scholar 

  • Norasekin T, Siti M, Kasran R (2020) Induction and propagation of somatic embryos from cell suspension cultures of Theobroma cacao L. Malays Cocoa J 12

    Google Scholar 

  • Olhoft PM, Phillips RL (2018) Genetic and epigenetic instability in tissue culture and regenerated progenies. In: Plant responses to environmental stresses. Routledge, pp 111–148

    Google Scholar 

  • Orbović V, Ćalović M, Viloria Z, Nielsen B, Gmitter F, Castle W, Grosser J (2008) Analysis of genetic variability in various tissue culture-derived lemon plant populations using RAPD and flow cytometry. Euphytica 161:329–335

    Article  Google Scholar 

  • Padma Mallaya N, Ravishankar G (2013) In vitro propagation and genetic fidelity study of plant regenerated from inverted hypocotyl explants of eggplant (Solanum melongena L.) cv. Arka Shirish. 3 Biotech 3:45–52

    Google Scholar 

  • Parida R, Mohanty S, Nayak S (2013) In vitro propagation of Hedychium coronarium Koen through axillary bud proliferation. Plant Biosyst Int J Deal Aspects Plant Biol 147(4):905–912

    Google Scholar 

  • Park S (2021) Plant tissue culture: techniques and experiments. Academic Press

    Google Scholar 

  • Pastelín Solano MC, Salinas Ruíz J, González Arnao MT, Castañeda Castro O, Galindo Tovar ME, Bello Bello JJ (2019) Evaluation of in vitro shoot multiplication and ISSR marker based assessment of somaclonal variants at different subcultures of vanilla (Vanilla planifolia Jacks). Physiol Mol Biol Plants 25:561–567

    Article  Google Scholar 

  • Pawełkowicz ME, Skarzyńska A, Mróz T, Bystrzycki E, Pląder W (2021) Molecular insight into somaclonal variation phenomena from transcriptome profiling of cucumber (Cucumis sativus L.) lines. Plant Cell Tissue Organ Cult (PCTOC) 145:239–259

    Article  Google Scholar 

  • Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53(5):801–808

    Article  CAS  Google Scholar 

  • Phillips R (2012) Case histories of genetic variability in vitro: oats and maize. Plant Regen Genet Var 3:435

    Google Scholar 

  • Pijut PM, Beasley RR, Lawson SS, Palla KJ, Stevens ME, Wang Y (2012) In vitro propagation of tropical hardwood tree species—a review (2001–2011). Propag Ornam Plants 12(1):25–51

    Google Scholar 

  • Podwyszyńska M, Marasek-Ciołakowska A (2021) Ploidy, genome size, and cytogenetics of apple. In: The apple genome, pp 47–71

    Google Scholar 

  • Purwati RD (2007) Resistance of Abaca somaclonal variant against fusarium. HAYATI J Biosci 14(4):133–139

    Article  Google Scholar 

  • Rádi F, Nagy B, Ferenc G, Török K, Nagy I, Zombori Z, Dudits D et al (2021) In planta test system for targeted cellular mutagenesis by injection of oligonucleotides to apical meristem of maize seedlings. Acta Physiol Plant 43(5):79

    Article  Google Scholar 

  • Rahman A, Alam R, Afrin H, Ahmed M (2022) Somaclonal variation-a gateway for varietal improvement of non-flowering sugarcane germplasms. Bangladesh J 42:45–49

    Google Scholar 

  • Rai MK (2022) Somaclonal variation in improvement of agricultural crops: recent progress. In: Agricultural biotechnology: latest research and trends, pp 129–146

    Google Scholar 

  • Rajam M, Nandy S, Pandey R (2021) Biotechnology of red pepper. In: Genetically modified crops: current status, prospects and challenges, vol 2, pp 53–83

    Google Scholar 

  • Rajan RP, Singh G (2021) A review on application of somaclonal variation in important horticulture crops. Plant Cell Biotechnol Mol Biol 161–175

    Google Scholar 

  • Rajani K, Kumar RR, Ranjan T, Patil G, Kumar A, Kumar J (2017) Somaclonal variation: a tissue culture approach to crop improvement, plant biotechnology. Apple Academic Press, pp 215–232

    Google Scholar 

  • Raman T, Praveen S, Shukla S (2019) Micropropagation of Olea europaea L. cv. Barnea, through nodal segment of adventitious shoot and assessment of its genetic fidelity through molecular markers. Plant Cell Biotechnol Mol Biol 20(1–2):22–34

    Google Scholar 

  • Ranghoo-Sanmukhiya V (2021) Somaclonal variation and methods used for its detection. In: Propagation and genetic manipulation of plants, pp 1–18

    Google Scholar 

  • Ravindra NS, Ramesh SI, Gupta MK, Jhang T, Shukla AK, Darokar MP, Kulkarni RN (2012) Evaluation of somaclonal variation for genetic improvement of patchouli (Pogostemon patchouli), an exclusively vegetatively propagated aromatic plant. J Crop Sci Biotechnol 15:33–39

    Article  Google Scholar 

  • Ray I, Bingham E (1991) Inheritance of a mutable phenotype that is activated in alfalfa tissue culture. Genome 34(1):35–40

    Article  Google Scholar 

  • Reed SM, Wernsman E (1989) DNA amplification among anther-derived doubled haploid lines of tobacco and its relationship to agronomic performance. Crop Sci 29(4):1072–1076

    Article  Google Scholar 

  • Rival A, Ilbert P, Labeyrie A, Torres E, Doulbeau S, Personne A, Dussert S et al (2013) Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep 32:359–368

    Article  CAS  Google Scholar 

  • Roychowdhury D, Halder M, Jha S (2017) Mediated transformation in medicinal plants: genetic stability in long-term culture. In: Transgenesis and secondary metabolism, pp 323–345

    Google Scholar 

  • Ruiz M, Rueda J, Peláez M, Espino F, Candela M, Sendino A, Vázquez A (1992) Somatic embryogenesis, plant regeneration and somaclonal variation in barley. Plant Cell Tissue Organ Cult 28:97–101

    Article  Google Scholar 

  • Sabooni N, Shekafandeh A, Gharaghani A, Teixeira Da Silva JA (2022) Tissue culture of Rubus sp. by different methods and assessment of genetic fidelity of regenerated plants using RAPD. Agricult Conspec Sci 87(3):223–230

    Google Scholar 

  • Sakhanokho HF, Witcher AL, Pounders CT, Spiers JM (2012) ‘Ramata’: a new dwarf variegated Hedychium (ornamental ginger) cultivar. HortScience 47(6):803–805

    Article  Google Scholar 

  • Samarina L, Gvasaliya M, Koninskaya N, Rakhmangulov R, Efremov A, Kiselyova N, Ryndin A et al (2019) A comparison of genetic stability in tea [Camellia sinensis (L.) Kuntze] plantlets derived from callus with plantlets from long-term in vitro propagation. Plant Cell Tissue Organ Cult (PCTOC) 138:467–474

    Article  CAS  Google Scholar 

  • Saravanan S, Sarvesan R, Vinod M (2011) Identification of DNA elements involved in somaclonal variants of Rauvolfia serpentina (L.) arising from indirect organogenesis as evaluated by ISSR analysis. Indian J Sci Technol 4:1241–1245

    Article  Google Scholar 

  • Sarmah D, Sutradhar M, Singh BK (2017) Somaclonal variation and its’ application in ornamentals plants. Int J Pure App Biosci 5:396–406

    Article  Google Scholar 

  • Sarmast MK (2018) In vitro propagation of conifers using mature shoots. J Forest Res 29:565–574

    Article  Google Scholar 

  • Shaik S, Chetty D, Watt MP (2023) Micropropagation decreases pollen and seed viabilities of two Solanum nigrum clonal genotypes. S Afr J Bot 153:203–208

    Article  CAS  Google Scholar 

  • Shange SBD (2021) Application of tissue culture and molecular techniques in disease resistance breeding of grapevine. Cape Peninsula University of Technology

    Google Scholar 

  • Singh B, Harvey B (1975) Selection for diploid cells in suspension cultures of Haplopappus gracilis. Nature 253(5491):453–453

    Article  Google Scholar 

  • Singh R (2015) Genetic stability assessment of conserved plant genetic resources. Management of Plant Genetic Resources, National Bureau of Plant Genetic Resources, New Delhi, 323 p. Published in 2015 All Rights Reserved ICAR-National Bureau of Plant Genetic Resources New Delhi 110012, India Copies can be obtained from: The Director ICAR-National Bureau of Plant Genetic Resources New Delhi 110012, India E-mail: director@ nbpgr. ernet: 232.

    Google Scholar 

  • Smith M, Pillay M (2020) An overview of genetic improvement in bananas over the last century. In: Achieving sustainable cultivation of bananas, pp 1–28

    Google Scholar 

  • Stanišić M, Raspor M, Ninković S, Milošević S, Ćalić D, Bohanec B, Trifunović M et al (2015) Clonal fidelity of Iris sibirica plants regenerated by somatic embryogenesis and organogenesis in leaf-base culture—RAPD and flow cytometer analyses. S Afr J Bot 96:42–52

    Article  Google Scholar 

  • Sun S, Zhong J, Li S, Wang X (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind.). Botanical Stud 54(1):1–7

    Google Scholar 

  • Sun Z-X, Zhao C, Zheng K, Qi X, Fu Y (1983) Somaclonal genetics of rice, Oryza sativa L. Theoretical and applied genetics

    Google Scholar 

  • Sura W, Kabza M, Karlowski WM, Bieluszewski T, Kus-Slowinska M, Pawełoszek L, Sadowski J, Ziolkowskia PA (2017) Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 29:791–807

    Google Scholar 

  • Swennen R, Rhee J, Panis B, Wilms H, Bièvre D, Rosiers E (2021) Tissue necrosis prevention during shoot multiplication of coconut. In: IX international scientific and practical conference on biotechnology as an instrument for plant biodiversity conservation 1339, pp 173–180

    Google Scholar 

  • Tegg R, Thangavel T, Aminian H, Wilson C (2013) Somaclonal selection in potato for resistance to common scab provides concurrent resistance to powdery scab. Plant Pathol 62(4):922–931

    Article  Google Scholar 

  • Testolin R, Cipriani G (2016) Markers, maps, and marker-assisted selection. The Kiwifruit Genome, pp 85–99

    Google Scholar 

  • Thakur M, Sharma V, Chauhan A (2021) Genetic fidelity assessment of long term in vitro shoot cultures and regenerated plants in Japanese plum CVS Santa Rosa and Frontier through RAPD, ISSR and SCoT markers. S Afr J Bot 140:428–433

    Article  CAS  Google Scholar 

  • Tikendra L, Choudhary R, Sanayaima Devi R, Dey A, Potshangbam AM, Nongdam P (2021) Micropropagation of bamboos and clonal fidelity assessment using molecular markers. In: Biotechnological advances in Bamboo: The “Green Gold” on the earth, pp 145–185

    Google Scholar 

  • Tobiasz-Salach R, Mazurek M, Jacek B (2023) Physiological, biochemical, and epigenetic reaction of maize (Zea mays L.) to cultivation in conditions of varying soil salinity and foliar application of silicon. Int J Mol Sci 24(2):1141

    Google Scholar 

  • Tripathi MK, Tiwari S, Tripathi N, Tiwari G, Bhatt D, Vibhute M, Gupta N et al (2021) Plant tissue culture techniques for conservation of biodiversity of some plants appropriate propagation in degraded and temperate areas. In: Current topics in agricultural sciences international, vol 4, pp 30–60

    Google Scholar 

  • Tripathy SK, Panda A, Lenka D (2016) Cytological elucidation of somaclonal variation in grasspea (Lathyrus sativus L.). Legume Res Int J 39(2):177–182

    Google Scholar 

  • Vir R, Kumar V (2021) Role of plant tissue culture in improvement of horticultural crops. Ann Horticult 14(1):1–6

    Article  Google Scholar 

  • Wenting X, Xue W, Huichun L, Zhang J, Jianghua Z, Rongxin G, Kaiyuan Z (2022) miRNA expression differentiation induced by polyploidization in newly formed triploids of black poplar. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50(4):12964–12964

    Google Scholar 

  • Wibowo A, Becker C, Durr J, Price J, Spaepen S, Hilton S, Putra H et al (2018) Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proc Natl Acad Sci 115(39):E9145–E9152

    Article  CAS  Google Scholar 

  • Wu Y, **e M, Long Q (2011) In vitro organogenesis and plant regeneration from leaves of Actinidia eriantha Benth. cv White (kiwifruit). New Zealand J Crop Horticult Sci 39(4):231–240

    Google Scholar 

  • Yaakov B, Kashkush K (2011) Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int J Plant Genom

    Google Scholar 

  • Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A (2020) Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. Insect Biochem Mol Biol 121:103363

    Article  CAS  Google Scholar 

  • Yoo C-M, Dalid C, Moyer C, Whitaker V, Lee S (2022) Improving strawberry varieties by somaclonal variation: HS1448, 10/2022. EDIS 2022(4)

    Google Scholar 

  • Zhang L-Q, Cheng Z-H, Khan MA, Zhou Y-L (2012) In vitro selection of resistant mutant garlic lines by using crude pathogen culture filtrate of Sclerotium cepivorum. Aust Plant Pathol 41:211–217

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Dorani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dorani, E., Dehghanian, Z., Gougerdchi, V., Hamedpour-Darabi, M. (2024). Application of Somaclonal Variation in Crop Improvements. In: Kumar, N. (eds) Plant Mutagenesis. Sustainable Landscape Planning and Natural Resources Management. Springer, Cham. https://doi.org/10.1007/978-3-031-50729-8_8

Download citation

Publish with us

Policies and ethics

Navigation