Homogeneous Liquid–Liquid Microextraction

  • Chapter
  • First Online:
Microextraction Techniques

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The development of liquid phase microextraction methods has led to significant progress in extraction processes by overcoming several challenges associated with conventional liquid–liquid extraction techniques. Liquid phase microextraction is a more cost-effective and eco-friendly alternative that is easier to implement compared to the traditional method. However, the use of water immiscible solvents as extractants in both liquid–liquid and dispersive liquid–liquid microextraction methods posed a challenge in extracting polar drugs. To address this limitation, homogeneous liquid–liquid microextraction emerged as the preferred mode for extracting polar analytes from complex matrices. HLLME uses hydrophilic, water-miscible solvents as extractants, leading to the formation of a homogeneous phase between the extractant and aqueous media. Because there is no interface between the sample and the extractant, HLLME provides superior extraction efficiency compared to other modes of liquid phase microextraction. Phase separation can be achieved by adding chemicals such as salt or sugar or manipulating the extractant's physicochemical properties, such as temperature or pH. In this chapter, we provide a detailed discussion of different homogeneous liquid–liquid microextraction modes, with emphasis on the fundamentals, the new developments and the applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

CHCl:

Choline chloride

DES:

Deep eutectic solvent

DLLME:

Dispersive liquid–liquid microextraction

EHLLME:

Emulsification induced homogeneous liquid–liquid microextraction

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

HLLME:

Homogeneous liquid–liquid microextraction

LLE:

Liquid–liquid extraction

LPME:

Liquid phase microextraction

LLME:

Liquid–liquid microextraction

PSA:

Phase separating agent

SALLME:

Salting-out induced liquid–liquid microextraction

SHS:

Switchable hydrophilic solvent

SULLME:

Sugaring-out induced liquid–liquid microextraction

THF:

Tetrahydrofuran

DMSO:

Dimethyl sulfoxide

IPA:

Isopropyl alcohol

SIPTE:

Solvent induced phase transition extraction

SULLE:

Sugaring-out induced liquid–liquid extraction

EF:

Enrichment factor

ISFME:

In situ Solvent formation microextraction

HLLE:

Homogeneous liquid–liquid extraction

IL:

Ionic liquid

SA-HLLME:

Surfactant-assisted HLLME

MA-IL-HLLME:

Microwave assisted-IL-HLLME

NPs:

Nanoparticles

APA:

Analytical process automation

DEHPA:

Bis(2-ethylhexyl) phosphoric acid

HSLLME:

Hydrophobic substance induced HLLME

References

  1. Xu L, Qi X, Li X, Bai Y, Liu H (2016) Recent advances in applications of nanomaterials for sample preparation. Talanta 146:714–726. https://doi.org/10.1016/j.talanta.2015.06.036

    Article  CAS  PubMed  Google Scholar 

  2. Niu Z, Zhang W, Yu C, Zhang J, Wen Y (2018) Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC - Trends Anal Chem 102:123–146. https://doi.org/10.1016/j.trac.2018.02.005

    Article  CAS  Google Scholar 

  3. Filippou O, Bitas D, Samanidou V (2017) Green approaches in sample preparation of bioanalytical samples prior to chromatographic analysis. J Chromatogr B Anal Technol Biomed Life Sci 1043:44–62. https://doi.org/10.1016/j.jchromb.2016.08.040

    Article  CAS  Google Scholar 

  4. Hammad SF, Abdallah IA, Bedair A, Mansour FR (2022) Homogeneous liquid–liquid extraction as an alternative sample preparation technique for biomedical analysis. J Sep Sci 45:185–209. https://doi.org/10.1002/jssc.202100452

    Article  CAS  PubMed  Google Scholar 

  5. Abdallah IA, Hammad SF, Bedair A, Mansour FR (2021) Sugaring-out induced homogeneous liquid-liquid microextraction as an alternative mode for biological sample preparation: a comparative study. J Sep Sci 44:3117–3125. https://doi.org/10.1002/jssc.202100255

    Article  CAS  PubMed  Google Scholar 

  6. da Silva S, Burato J, Vargas Medina DA, de Toffoli AL, Vasconcelos Soares Maciel E, Mauro Lanças F (2020) Recent advances and trends in miniaturized sample preparation techniques. J Sep Sci 43:202–225

    Article  Google Scholar 

  7. Altunay N, Elik A, Unal Y, Kaya S (2021) Optimization of an ultrasound-assisted alcohol-based deep eutectic solvent dispersive liquid-phase microextraction for separation and preconcentration of quercetin in wine and food samples with response surface methodology. J Sep Sci 44:1998–2005. https://doi.org/10.1002/jssc.202100048

    Article  CAS  PubMed  Google Scholar 

  8. Farajzadeh MA, Sohrabi H, Mohebbi A, Mogaddam MRA (2019) Combination of a modified quick, easy, cheap, efficient, rugged, and safe extraction method with a deep eutectic solvent based microwave-assisted dispersive liquid–liquid microextraction: application in extraction and preconcentration of multiclass pesticide residues in tomato samples. J Sep Sci 42:1273–1280. https://doi.org/10.1002/jssc.201801107

    Article  CAS  PubMed  Google Scholar 

  9. Asadollahi T, Dadfarnia S, Haji Shabani AM, Amirkavei M (2015) Separation/preconcentration and determination of quercetin in food samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop -flow injection spectrophotometry. J Food Sci Technol 52:1103–1109. https://doi.org/10.1007/s13197-013-1077-9

    Article  CAS  PubMed  Google Scholar 

  10. Mansour FR, Khairy MA (2017) Pharmaceutical and biomedical applications of dispersive liquid–liquid microextraction. J Chromatogr B 1061–1062:382–391. https://doi.org/10.1016/J.JCHROMB.2017.07.055

    Article  Google Scholar 

  11. Mansour FR, Danielson ND (2017) Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 170:22–35. https://doi.org/10.1016/j.talanta.2017.03.084

    Article  CAS  PubMed  Google Scholar 

  12. Hammad MA, Kamal AH, Kannouma RE, Mansour FR (2021) Vortex-assisted dispersive liquid-liquid microextraction coupled with deproteinization for determination of nateglinide in human plasma using HPLC/UV. J Chromatogr Sci 59:297–304. https://doi.org/10.1093/chromsci/bmaa096

    Article  CAS  PubMed  Google Scholar 

  13. Matkovich CE, Christian GD (1973) Salting-out of acetone from water. Basis of a new solvent extraction system. Anal Chem 45:1915–1921. https://doi.org/10.1021/ac60333a023

    Article  CAS  Google Scholar 

  14. Gupta M, Jain A, Verma KK (2009) Salt-assisted liquid-liquid microextraction with water-miscible organic solvents for the determination of carbonyl compounds by high-performance liquid chromatography. Talanta 80:526–531. https://doi.org/10.1016/j.talanta.2009.07.021

    Article  CAS  PubMed  Google Scholar 

  15. Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634:186–191. https://doi.org/10.1016/j.aca.2008.12.017

    Article  CAS  PubMed  Google Scholar 

  16. Liu G, Zhou N, Zhang M, Li S, Tian Q, Chen J, Chen B, Wu Y, Yao S (2010) Hydrophobic solvent induced phase transition extraction to extract drugs from plasma for high performance liquid chromatography–mass spectrometric analysis. J Chromatogr A 1217:243–249. https://doi.org/10.1016/J.CHROMA.2009.11.037

    Article  CAS  PubMed  Google Scholar 

  17. Gao S, ** H, You J, Ding Y, Zhang N, Wang Y, Ren R, Zhang R, Zhang H (2011) Ionic liquid-based homogeneous liquid-liquid microextraction for the determination of antibiotics in milk by high-performance liquid chromatography. J Chromatogr A 1218:7254–7263. https://doi.org/10.1016/j.chroma.2011.08.063

    Article  CAS  PubMed  Google Scholar 

  18. Seidi S, Alavi L (2019) Novel and rapid deep eutectic solvent (DES) homogeneous liquid-liquid microextraction (HLLME) with flame atomic absorption spectrometry (FAAS) detection for the determination of copper in vegetables. Anal Lett 52:2092–2106. https://doi.org/10.1080/00032719.2019.1598425

    Article  CAS  Google Scholar 

  19. Kannouma RE, Hammad MA, Kamal AH, Mansour FR (2022) Miniaturization of Liquid-Liquid extraction; the barriers and the enablers. Microchem J 182:107863. https://doi.org/10.1016/j.microc.2022.107863

    Article  CAS  Google Scholar 

  20. Kamal AH, Hammad MA, Kannouma RE, Mansour FR (2022) Response surface optimization of a vortex-assisted dispersive liquid–liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV. BMC Chem 16:33. https://doi.org/10.1186/s13065-022-00826-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kannouma RE, Hammad MA, Kamal AH, Mansour FR (2021) A dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for determination of antiviral agents in environmental water using HPLC/UV. Microchem J 171:106790. https://doi.org/10.1016/j.microc.2021.106790

    Article  CAS  Google Scholar 

  22. Dean JA (1999) Lange’s handbook of chemistry, 15th edn. McGraw Hill Inc., New YorK, USA

    Google Scholar 

  23. De Brito CG, Souza IN, Mourão T, Freire MG, Soares CMF, Lima ÁS (2014) Novel aqueous two-phase systems composed of acetonitrile and polyols: phase diagrams and extractive performance. Sep Purif Technol 124:54–60. https://doi.org/10.1016/j.seppur.2014.01.004

    Article  CAS  Google Scholar 

  24. Armenta S, Garrigues S, de la Guardia M (2008) Green Analytical chemistry. TrAC Trends Anal Chem 27:497–511. https://doi.org/10.1016/j.trac.2008.05.003

    Article  CAS  Google Scholar 

  25. Koel M, Kaljurand M (2006) Application of the principles of green chemistry in analytical chemistry. Pure Appl Chem 78:1993–2002. https://doi.org/10.1351/pac200678111993

    Article  CAS  Google Scholar 

  26. Tobiszewski M, Mechlińska A, Namieśnik J (2010) Green analytical chemistry—theory and practice. Chem Soc Rev 39:2869. https://doi.org/10.1039/b926439f

    Article  CAS  PubMed  Google Scholar 

  27. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  28. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010

    Article  CAS  Google Scholar 

  29. Zhang L, Yu R, Yu Y, Wang C, Zhang D (2019) Determination of four acetanilide herbicides in brown rice juice by ionic liquid / ionic liquid-homogeneous liquid-liquid micro-extraction high performance liquid chromatography. Microchem J 146:115–120. https://doi.org/10.1016/j.microc.2018.12.062

    Article  CAS  Google Scholar 

  30. Khezeli T, Daneshfar A, Sahraei R (2015) Emulsification liquid–liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A 1425:25–33. https://doi.org/10.1016/j.chroma.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  31. Pochivalov A, Davletbaeva P, Cherkashina K, Lezov A, Vakh C, Bulatov A (2018) Surfactant-mediated microextraction approach using switchable hydrophilicity solvent: HPLC-UV determination of Sudan dyes in solid food samples. J Mol Liq 271:807–814. https://doi.org/10.1016/j.molliq.2018.09.072

    Article  CAS  Google Scholar 

  32. Ullah N, Tuzen M (2023) A comprehensive review on recent developments and future perspectives of switchable solvents and their applications in sample preparation techniques. Green Chem 25:1729–1748. https://doi.org/10.1039/D3GC00020F

    Article  CAS  Google Scholar 

  33. Hosseini MH, Rezaee M, Mashayekhi HA, Akbarian S, Mizani F, Pourjavid MR (2012) Determination of polycyclic aromatic hydrocarbons in soil samples using flotation-assisted homogeneous liquid–liquid microextraction. J Chromatogr A 1265:52–56. https://doi.org/10.1016/j.chroma.2012.09.099

    Article  CAS  PubMed  Google Scholar 

  34. Okhravi T, Sorouraddin SM, Farajzadeh MA, Mohebbi A (2020) Development of a liquid-nitrogen-induced homogeneous liquid–liquid microextraction of Co(II) and Ni(II) from water and fruit juice samples followed by atomic absorption spectrometry detection. Anal Bioanal Chem 412:1675–1684. https://doi.org/10.1007/s00216-020-02406-0

    Article  CAS  PubMed  Google Scholar 

  35. Çabuk H, Kavaracı O (2022) Magnetic retrieval of a switchable hydrophilicity solvent: fast homogeneous liquid–liquid microextraction for the determination of benzophenone-type UV filters in environmental waters. Int J Environ Anal Chem 102:2569–2585. https://doi.org/10.1080/03067319.2020.1757088

    Article  CAS  Google Scholar 

  36. Xu X-Y, Ye J, Nie J, Li Z-G, Lee M-R (2015) A new liquid–liquid microextraction method by ultrasound assisted salting-out for determination of triazole pesticides in water samples coupled by gas chromatography-mass spectrometry. Anal Methods 7:1194–1199. https://doi.org/10.1039/C4AY02448F

    Article  CAS  Google Scholar 

  37. de Souza FLA, de Souza Ramos TJ, Montenegro MCBSM, Pinto L, Cassol TM, Paim APS (2021) Chemometric cleanup to eliminate ionic liquid interferences and enable its application on in-situ IL-DLLME using HPLC-DAD detection. J Mol Liq 330:115627. https://doi.org/10.1016/j.molliq.2021.115627

    Article  CAS  Google Scholar 

  38. Hassan AA, Tanimu A, Alhooshani K (2021) Iron and cobalt-containing magnetic ionic liquids for dispersive micro-solid phase extraction coupled with HPLC-DAD for the preconcentration and quantification of carbamazepine drug in urine and environmental water samples. J Mol Liq 336:116370. https://doi.org/10.1016/j.molliq.2021.116370

    Article  CAS  Google Scholar 

  39. Varona M, Eor P, Ferreira Neto LC, Merib J, Anderson JL (2021) Metal-containing and magnetic ionic liquids in analytical extractions and gas separations. TrAC Trends Anal Chem 140:116275. https://doi.org/10.1016/j.trac.2021.116275

    Article  CAS  Google Scholar 

  40. Rykowska I, Ziemblińska J, Nowak I (2018) Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J Mol Liq 259:319–339. https://doi.org/10.1016/j.molliq.2018.03.043

    Article  CAS  Google Scholar 

  41. Abdelaziz MA, Saleh AM, Mansour FR, Danielson ND (2022) A gadolinium-based magnetic ionic liquid for dispersive liquid-liquid microextraction of ivermectin from environmental water. J Chromatogr Sci. https://doi.org/10.1093/chromsci/bmac101

    Article  Google Scholar 

  42. Danielson ND, Mansour FR, Zhou L, Connell CV, Dotlich EM, Gibler JN, Norman BE, Grossman S, Wei W, Zhang Y (2018) Liquid chromatography with alkylammonium formate ionic liquid mobile phases and fluorescence detection. J Chromatogr A 1559:128–135. https://doi.org/10.1016/j.chroma.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  43. Ashouri V, Adib K, Fariman GA, Ganjali MR, Rahimi-Nasrabadi M (2021) Determination of arsenic species using functionalized ionic liquid by in situ dispersive liquid-liquid microextraction followed by atomic absorption spectrometry. Food Chem 349:129115. https://doi.org/10.1016/j.foodchem.2021.129115

    Article  CAS  PubMed  Google Scholar 

  44. Fan C, Li N, Cao X (2015) Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chem 174:446–451. https://doi.org/10.1016/j.foodchem.2014.11.050

    Article  CAS  PubMed  Google Scholar 

  45. Xu W, Li J, Feng J, Wang Z, Zhang H (2021) In-syringe temperature-controlled liquid–liquid microextraction based on solidified floating ionic liquid for the simultaneous determination of triazine and phenylurea pesticide in vegetable protein drinks. J Chromatogr B Anal Technol Biomed Life Sci 1174:122721. https://doi.org/10.1016/j.jchromb.2021.122721

    Article  CAS  Google Scholar 

  46. Wang H, Hu L, Li W, Yang X, Lu R, Zhang S, Zhou W, Gao H, Li J (2017) In-syringe dispersive liquid-liquid microextraction based on the solidification of ionic liquids for the determination of benzoylurea insecticides in water and tea beverage samples. Talanta 162:625–633. https://doi.org/10.1016/j.talanta.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Hu J, Du H, He S, Li Q, Zhang H (2016) Microwave-assisted ionic liquid homogeneous liquid-liquid microextraction coupled with high performance liquid chromatography for the determination of anthraquinones in Rheum palmatum L. J Pharm Biomed Anal 125:178–185. https://doi.org/10.1016/j.jpba.2016.03.046

    Article  CAS  PubMed  Google Scholar 

  48. Santana-Mayor Á, Rodríguez-Ramos R, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MÁ (2021) Deep eutectic solvents: the new generation of green solvents in analytical chemistry. TrAC - Trends Anal Chem 134:116108. https://doi.org/10.1016/j.trac.2020.116108

  49. Florindo C, Oliveira FS, Rebelo LPN, Fernandes AM, Marrucho IM (2014) Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain Chem Eng 2:2416–2425. https://doi.org/10.1021/sc500439w

    Article  CAS  Google Scholar 

  50. Guthrie F (1884) On Eutexia. Proc Phys Soc London 6:124–146. https://doi.org/10.1088/1478-7814/6/1/312

    Article  Google Scholar 

  51. Gill I, Vulfson E (1994) Enzymic catalysis in heterogeneous eutectic mixtures of substrates. Trends Biotechnol 12:118–122

    Article  CAS  PubMed  Google Scholar 

  52. Abranches DO, Martins MAR, Silva LP, Schaeffer N, Pinho SP, Coutinho JAP (2019) Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chem Commun 55:10253–10256. https://doi.org/10.1039/C9CC04846D

    Article  CAS  Google Scholar 

  53. Liu L, Zhu T (2017) Emulsification liquid–liquid microextraction based on deep eutectic solvents: an extraction method for the determination of sulfonamides in water samples. Anal Methods 9:4747–4753. https://doi.org/10.1039/C7AY01332A

    Article  CAS  Google Scholar 

  54. Aydin F, Yilmaz E, Soylak M (2017) A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem J 132:280–285. https://doi.org/10.1016/j.microc.2017.02.014

    Article  CAS  Google Scholar 

  55. Panhwar AH, Tuzen M, Kazi TG (2018) Deep eutectic solvent based advance microextraction method for determination of aluminum in water and food samples: multivariate study. Talanta 178:588–593. https://doi.org/10.1016/j.talanta.2017.09.079

    Article  CAS  PubMed  Google Scholar 

  56. Moghadam AG, Rajabi M, Asghari A (2018) Efficient and relatively safe emulsification microextraction using a deep eutectic solvent for influential enrichment of trace main anti-depressant drugs from complicated samples. J Chromatogr B 1072:50–59. https://doi.org/10.1016/j.jchromb.2017.09.042

    Article  CAS  Google Scholar 

  57. Zounr RA, Tuzen M, Khuhawar MY (2018) Novel ultrasonic-assisted deep eutectic solvent-based dispersive liquid–liquid microextraction for determination of vanadium in food samples by electrothermal atomic absorption spectrometry: a multivariate study. Appl Organomet Chem 32:e4144. https://doi.org/10.1002/aoc.4144

    Article  CAS  Google Scholar 

  58. Haleem A, Tuzen M, Gul T (2017) Talanta Ultrasonic assisted dispersive liquid-liquid microextraction method based on deep eutectic solvent for speciation, preconcentration and determination of selenium species (IV) and (VI) in water and food samples. Talanta 175:352–358. https://doi.org/10.1016/j.talanta.2017.07.063

    Article  CAS  Google Scholar 

  59. Aydin F, Yilmaz E, Soylak M (2018) Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chem 243:442–447. https://doi.org/10.1016/j.foodchem.2017.09.154

    Article  CAS  PubMed  Google Scholar 

  60. Ali R, Tuzen M, Deligonul N, Yar M (2018) A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry. Food Chem 253:277–283. https://doi.org/10.1016/j.foodchem.2018.01.167

    Article  CAS  Google Scholar 

  61. Zounr RA, Tuzen M, Khuhawar MY (2018) A simple and green deep eutectic solvent based air assisted liquid phase microextraction for separation, preconcentration and determination of lead in water and food samples by graphite furnace atomic absorption spectrometry. J Mol Liq 259:220–226. https://doi.org/10.1016/j.molliq.2018.03.034

    Article  CAS  Google Scholar 

  62. Santana-Mayor Á, Socas-Rodríguez B, Rodríguez-Ramos R, Rodríguez-Delgado MÁ (2020) A green and simple procedure based on deep eutectic solvents for the extraction of phthalates from beverages. Food Chem 312:125798. https://doi.org/10.1016/j.foodchem.2019.125798

    Article  CAS  PubMed  Google Scholar 

  63. Babaee S, Daneshfar A, Sahraei R (2019) Deep eutectic solvent-based emulsification liquid–liquid microextraction coupled with gas chromatography for the determination of thiophenols in water samples. Anal Methods 11:1663–1670. https://doi.org/10.1039/C8AY02719F

    Article  CAS  Google Scholar 

  64. Elik A, Demirbas A, Altunay N (2019) Develo** a new and simple natural deep eutectic solvent based ultrasonic-assisted microextraction procedure for determination and preconcentration of As and Se from rice samples. Anal Methods 11:3429–3438. https://doi.org/10.1039/C9AY00916G

    Article  CAS  Google Scholar 

  65. Altunay N, Elik A, Gürkan R (2019) Natural deep eutectic solvent-based ultrasound- assisted-microextraction for extraction, pre-concentration and analysis of methylmercury and total mercury in fish and environmental waters by spectrophotometry. Food Addit Contam Part A 36:1079–1097. https://doi.org/10.1080/19440049.2019.1619939

    Article  CAS  Google Scholar 

  66. Thongsaw A, Udnan Y, Ross GM, Chaiyasith WC (2019) Talanta Speciation of mercury in water and biological samples by eco-friendly ultrasound-assisted deep eutectic solvent based on liquid phase microextraction with electrothermal atomic absorption spectrometry. Talanta 197:310–318. https://doi.org/10.1016/j.talanta.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  67. Li X, Wang M, Zhao J, Guo H, Gao X, **ong Z, Zhao L (2019) Ultrasound-assisted emulsification liquid phase microextraction method based on deep eutectic solvent as extraction solvent for determination of five pesticides in traditional Chinese medicine. J Pharm Biomed Anal 166:213–221. https://doi.org/10.1016/j.jpba.2019.01.018

    Article  CAS  PubMed  Google Scholar 

  68. Heidari H, Yari B (2020) Multivariate optimization of an ultrasound-Assisted Deep Eutectic Solvent-Based Liquid-Phase Microextraction Method for HPLC–UV Analysis of Carbamazepine in Plasma. Chromatographia 83:1467–1475. https://doi.org/10.1007/s10337-020-03966-0

    Article  CAS  Google Scholar 

  69. Altunay N, Unal Y, Elik A (2020) Towards green analysis of curcumin from tea, honey and spices: extraction by deep eutectic solvent assisted emulsification liquid-liquid microextraction method based on response surface design. Food Addit Contam Part A 37:869–881. https://doi.org/10.1080/19440049.2020.1748233

    Article  CAS  Google Scholar 

  70. Ao Y, Chen Y, Ding W (2021) Deep eutectic solvent-based ultrasound-assisted emulsification microextraction for the rapid determination of benzotriazole and benzothiazole derivatives in surface water samples. J Hazard Mater 401:123383. https://doi.org/10.1016/j.jhazmat.2020.123383

    Article  CAS  PubMed  Google Scholar 

  71. Farajzadeh MA, Shahedi Hojghan A, Afshar Mogaddam MR (2018) Development of a new temperature-controlled liquid phase microextraction using deep eutectic solvent for extraction and preconcentration of diazinon, metalaxyl, bromopropylate, oxadiazon, and fenazaquin pesticides from fruit juice and vegetable samples fo. J Food Compos Anal 66:90–97. https://doi.org/10.1016/j.jfca.2017.12.007

    Article  CAS  Google Scholar 

  72. Lu Y, Wang X, Gu H, Gao M (2021) Morphological transformation assisted switchable deep eutectic solvents combined with HPLC-DAD for the detection of six UV-filters in surface and bathing waters. Microchem J 169:106626. https://doi.org/10.1016/j.microc.2021.106626

    Article  CAS  Google Scholar 

  73. Jouyban A, Farajzadeh MA, Khodadadeian F, Khoubnasabjafari M, Afshar Mogaddam MR (2021) Development of a deep eutectic solvent-based ultrasound-assisted homogenous liquid-liquid microextraction method for simultaneous extraction of daclatasvir and sofosbuvir from urine samples. J Pharm Biomed Anal 204:114254. https://doi.org/10.1016/j.jpba.2021.114254

    Article  CAS  PubMed  Google Scholar 

  74. Hosseini MH, Rezaee M, Akbarian S, Mizani F, Pourjavid MR, Arabieh M (2013) Homogeneous liquid–liquid microextraction via flotation assistance for rapid and efficient determination of polycyclic aromatic hydrocarbons in water samples. Anal Chim Acta 762:54–60. https://doi.org/10.1016/j.aca.2012.10.030

    Article  CAS  PubMed  Google Scholar 

  75. Rezaee M, Saberyan K, Tajer-Mohammad-Ghazvini P (2019) Determination of malathion by homogeneous liquid-liquid micro extraction via flotation assistance combined with gas chromatography in water samples. Bull Chem Soc Ethiop 33:1–10. https://doi.org/10.4314/bcse.v33i1.1

    Article  CAS  Google Scholar 

  76. Xu XY, Ye JQ, Nie J, Li ZG, Lee MR (2015) A new liquid-liquid microextraction method by ultrasound assisted salting-out for determination of triazole pesticides in water samples coupled by gas chromatography-mass spectrometry. Anal Methods 7:1194–1199. https://doi.org/10.1039/c4ay02448f

    Article  CAS  Google Scholar 

  77. Abdallah IA, Hammad SF, Bedair A, Abdelaziz MA, Danielson ND, Elshafeey AH, Mansour FR (2022) A gadolinium-based magnetic ionic liquid for supramolecular dispersive liquid–liquid microextraction followed by HPLC/UV for the determination of favipiravir in human plasma. Biomed Chromatogr 36:1–10. https://doi.org/10.1002/bmc.5365

    Article  CAS  Google Scholar 

  78. Abdelaziz MA, Mansour FR, Danielson ND (2021) A gadolinium-based magnetic ionic liquid for dispersive liquid–liquid microextraction. Anal Bioanal Chem 413:205–214. https://doi.org/10.1007/s00216-020-02992-z

    Article  CAS  PubMed  Google Scholar 

  79. Mabrouk MM, Soliman SM, El-Agizy HM, Mansour FR (2020) Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. J Chromatogr B 1136:121932. https://doi.org/10.1016/j.jchromb.2019.121932

    Article  CAS  Google Scholar 

  80. Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid-liquid extraction in flow analysis: A critical review. Anal Chim Acta 652:54–65. https://doi.org/10.1016/j.aca.2009.05.042

    Article  CAS  PubMed  Google Scholar 

  81. Calderilla C, Maya F, Leal LO, Cerdà V (2018) Recent advances in flow-based automated solid-phase extraction. TrAC - Trends Anal Chem 108:370–380. https://doi.org/10.1016/j.trac.2018.09.011

    Article  CAS  Google Scholar 

  82. Vakh C, Falkova M, Timofeeva I, Moskvin A, Moskvin L, Bulatov A (2016) Flow analysis: a novel approach for classification. Crit Rev Anal Chem 46:374–388. https://doi.org/10.1080/10408347.2015.1087301

    Article  CAS  PubMed  Google Scholar 

  83. Pochivalov A, Vakh C, Garmonov S, Moskvin L, Bulatov A (2020) An automated in-syringe switchable hydrophilicity solvent-based microextraction. Talanta 209:120587. https://doi.org/10.1016/j.talanta.2019.120587

    Article  CAS  PubMed  Google Scholar 

  84. Vakh C, Pochivalov A, Andruch V, Moskvin L, Bulatov A (2016) A fully automated effervescence-assisted switchable solvent-based liquid phase microextraction procedure: liquid chromatographic determination of ofloxacin in human urine samples. Anal Chim Acta 907:54–59. https://doi.org/10.1016/J.ACA.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  85. Cherkashina K, Vakh C, Lebedinets S, Pochivalov A, Moskvin L, Lezov A, Bulatov A (2018) An automated salting-out assisted liquid-liquid microextraction approach using 1-octylamine: on-line separation of tetracycline in urine samples followed by HPLC-UV determination. Talanta 184:122–127. https://doi.org/10.1016/j.talanta.2018.02.112

    Article  CAS  PubMed  Google Scholar 

  86. Shishov A, Volodina N, Nechaeva D, Gagarinova S, Bulatov A (2019) An automated homogeneous liquid-liquid microextraction based on deep eutectic solvent for the HPLC-UV determination of caffeine in beverages. Microchem J 144:469–473. https://doi.org/10.1016/j.microc.2018.10.014

    Article  CAS  Google Scholar 

  87. Kalra A, Tugcu N, Cramer SM, Garde S (2001) Salting-in and salting-out of hydrophobic solutes in aqueous salt solutions. J Phys Chem B 105:6380–6386. https://doi.org/10.1021/jp010568+

    Article  CAS  Google Scholar 

  88. Hyde AM, Zultanski SL, Waldman JH, Zhong YL, Shevlin M, Peng F (2017) General principles and strategies for salting-out informed by the Hofmeister Series. Org Process Res Dev 21:1355–1370. https://doi.org/10.1021/acs.oprd.7b00197

    Article  CAS  Google Scholar 

  89. Görgényi M, Dewulf J, Van Langenhove H, Héberger K (2006) Aqueous salting-out effect of inorganic cations and anions on non-electrolytes. Chemosphere 65:802–810. https://doi.org/10.1016/j.chemosphere.2006.03.029

    Article  CAS  PubMed  Google Scholar 

  90. Jafari SA, Entezari MH (2020) Salting out in ACN/water systems: Hofmeister effects and partition of quercetin. J Mol Liq 312:113331. https://doi.org/10.1016/j.molliq.2020.113331

    Article  CAS  Google Scholar 

  91. Wang Q, Yin C, Xu L (2013) Optimization of hydrophilic interaction LC by univariate and multivariate methods and its combination with salting-out liquid-liquid extraction for the determination of antihypertensive drugs in the environmental waters. J Sep Sci 36:1007–1014. https://doi.org/10.1002/jssc.201200985

    Article  CAS  PubMed  Google Scholar 

  92. Heydari R, Zarabi S (2014) Development of combined salt- and air-assisted liquid-liquid microextraction as a novel sample preparation technique. Anal Methods 6:8469–8475. https://doi.org/10.1039/c4ay01723d

    Article  CAS  Google Scholar 

  93. Hammad SF, Abdallah IA, Bedair A, Mansour FR (2021) Salting-out induced liquid–liquid microextraction for alogliptin benzoate determination in human plasma by HPLC/UV. BMC Chem 15:1–10. https://doi.org/10.1186/s13065-020-00729-8

    Article  CAS  Google Scholar 

  94. Farajzadeh MA, Mohebbi A, Mogaddam MRA, Davaran M, Norouzi M (2018) Development of salt-induced homogenous liquid-liquid microextraction based on iso-propanol/sodium sulfate system for extraction of some pesticides in fruit juices. Food Anal Methods 11:2497–2507. https://doi.org/10.1007/s12161-018-1238-6

    Article  Google Scholar 

  95. Adlnasab L, Ebrahimzadeh H (2013) A novel salt-controlled homogenous ionic liquid phase microextraction based on the salting out effect and optimization of the procedure using the experimental design methodology. Anal Methods 5:5165–5171. https://doi.org/10.1039/c3ay40944a

    Article  CAS  Google Scholar 

  96. Gupta M, Jain A, Verma KK (2010) Determination of amoxapine and nortriptyline in blood plasma and serum by salt-assisted liquid-liquid microextraction and high-performance liquid chromatography. J Sep Sci 33:3774–3780. https://doi.org/10.1002/jssc.201000434

    Article  CAS  PubMed  Google Scholar 

  97. Liu J, Jiang M, Li G, Xu L, **e M (2010) Miniaturized salting-out liquid–liquid extraction of sulfonamides from different matrices. Anal Chim Acta 679:74–80. https://doi.org/10.1016/j.aca.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  98. Chen MJ, Liu YT, Lin CW, Ponnusamy VK, Jen JF (2013) Rapid determination of triclosan in personal care products using new in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction coupled with high performance liquid chromatography-ultraviolet detection. Anal Chim Acta 767:81–87. https://doi.org/10.1016/j.aca.2013.01.014

    Article  CAS  PubMed  Google Scholar 

  99. Hosseini M, Dalali N, Nejad SM (2012) A new mode of homogeneous liquid-liquid microextraction (HLLME) based on ionic liquids: In situ solvent formation microextraction (ISFME) for determination of lead. J Chinese Chem Soc 59:872–878. https://doi.org/10.1002/jccs.201100526

    Article  CAS  Google Scholar 

  100. Mohamed AMI, Abdel-Wadood HM, Mousa HS (2014) Simultaneous determination of dorzolomide and timolol in aqueous humor: A novel salting out liquid-liquid microextraction combined with HPLC. Talanta 130:495–505. https://doi.org/10.1016/j.talanta.2014.06.074

    Article  CAS  PubMed  Google Scholar 

  101. Abdallah IA, Hammad SF, Bedair A, Mansour FR (2021) A green homogeneous liquid-liquid microextraction method for spectrophotometric determination of daclatasvir in human plasma. Sustain Chem Pharm 22:100498. https://doi.org/10.1016/j.scp.2021.100498

    Article  CAS  Google Scholar 

  102. Sereshti H, Khosraviani M, Sadegh Amini-Fazl M (2014) Miniaturized salting-out liquid–liquid extraction in a coupled-syringe system combined with HPLC–UV for extraction and determination of sulfanilamide. Talanta 121:199–204. https://doi.org/10.1016/j.talanta.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  103. Du D, Dong G, Wu Y, Wang J, Gao M, Wang X, Li Y (2014) Salting-out induced liquid-liquid microextraction based on the system of acetonitrile/magnesium sulfate for trace-level quantitative analysis of fluoroquinolones in water, food and biological matrices by high-performance liquid chromatography with a fluor. Anal Methods 6:6973–6980. https://doi.org/10.1039/c4ay01080a

    Article  CAS  Google Scholar 

  104. Gupta M, Pillai AKKV, Singh A, Jain A, Verma KK (2011) Salt-assisted liquid-liquid microextraction for the determination of iodine in table salt by high-performance liquid chromatography-diode array detection. Food Chem 124:1741–1746. https://doi.org/10.1016/j.foodchem.2010.07.116

    Article  CAS  Google Scholar 

  105. Gupta M, Dsouza A (2020) Salting-out homogeneous liquid-liquid microextraction for the spectrophotometric determination of iodate in food grade salt. J Food Compos Anal 87:103396. https://doi.org/10.1016/j.jfca.2019.103396

    Article  CAS  Google Scholar 

  106. Chen W, Tu X, Wu D, Gao Z, Wu S, Huang S (2019) Comparison of the partition efficiencies of multiple phenolic compounds contained in propolis in different modes of acetonitrile–water-based homogenous liquid-liquid extraction. Molecules 24:442. https://doi.org/10.3390/molecules24030442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang J, Myasein F, Wu H, El-Shourbagy TA (2013) Sugaring-out assisted liquid/liquid extraction with acetonitrile for bioanalysis using liquid chromatography-mass spectrometry. Microchem J 108:198–202. https://doi.org/10.1016/j.microc.2012.10.024

    Article  CAS  Google Scholar 

  108. Yan L, Sun Y, **u Z (2016) Sugaring-out extraction coupled with fermentation of lactic acid. Sep Purif Technol 161:152–158. https://doi.org/10.1016/j.seppur.2016.01.049

    Article  CAS  Google Scholar 

  109. Mahdavi P, Nojavan S, Asadi S (2019) Extraction system. J Chromatogr A 100:460411. https://doi.org/10.1016/j.chroma.2019.460411

    Article  CAS  Google Scholar 

  110. Nugbienyo L, Malinina Y, Garmonov S, Kamencev M, Salahov I, Andruch V, Moskvin L, Bulatov A (2017) Automated sugaring-out liquid-liquid extraction based on flow system coupled with HPLC-UV for the determination of procainamide in urine. Talanta 167:709–713. https://doi.org/10.1016/j.talanta.2017.02.051

    Article  CAS  PubMed  Google Scholar 

  111. Zhang C, Huang K, Yu P, Liu H (2012) Sugaring-out three-liquid-phase extraction and one-step separation of Pt (IV), Pd (II) and Rh (III). Sep Purif Technol 87:127–134. https://doi.org/10.1016/j.seppur.2011.11.032

    Article  CAS  Google Scholar 

  112. Dhamole PB, Mahajan P, Feng H (2010) Phase separation conditions for sugaring-out in acetonitrile—water systems. J Chem Eng Data 999:3803–3806

    Google Scholar 

  113. Timofeeva I, Shishov A, Kanashina D, Dzema D, Bulatov A (2017) On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta 167:761–767. https://doi.org/10.1016/j.talanta.2017.01.008

    Article  CAS  PubMed  Google Scholar 

  114. Shi Z, Li Z, Qiu L, Sun M, Zhang DAN, Zhang H (2015) Sugaring-out assisted liquid/liquid extraction coupled with HPLC for the analysis of Honokiol and Magnolol in traditional Chinese herbal formula Huoxiang-Zhengqi Oral Liquid. J Liq Chromatogr Relat Technol 38:722–728. https://doi.org/10.1080/10826076.2014.962147

    Article  CAS  Google Scholar 

  115. Smith F, Mara C, Soares F, Nogueira M, De CR, Miranda M, Bezerra E, Lucena R (2019) Simultaneous concentration and chromatographic detection of water pesticides traces using aqueous two-phase system composed of tetrahydrofuran and fructose. Microchem J 147:303–310. https://doi.org/10.1016/j.microc.2019.03.033

    Article  CAS  Google Scholar 

  116. Abdallah IA, Hammad SF, Bedair A, Elshafeey AH, Mansour FR (2022) Determination of favipiravir in human plasma using homogeneous liquid–liquid microextraction followed by HPLC/UV. Bioanalysis 14:205–216. https://doi.org/10.4155/bio-2021-0219

    Article  CAS  PubMed  Google Scholar 

  117. Mansour FR, Danielson ND (2012) Separation methods for captopril in pharmaceuticals and biological fluids. J Sep Sci 35:1213–1226. https://doi.org/10.1002/jssc.201200057

    Article  CAS  PubMed  Google Scholar 

  118. Hamad A, Elshahawy M, Negm A, Mansour FR (2020) Analytical methods for determination of glutathione and glutathione disulfide in pharmaceuticals and biological fluids. Rev Anal Chem 38:20190019. https://doi.org/10.1515/revac-2019-0019

    Article  CAS  Google Scholar 

  119. Mansour FR, Wei W, Danielson ND (2013) Separation of carnitine and acylcarnitines in biological samples: a review. Biomed Chromatogr 27:1339–1353. https://doi.org/10.1002/bmc.2995

    Article  CAS  PubMed  Google Scholar 

  120. Alkan C, Çabuk H (2022) Matrix-induced sugaring-out liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of organophosphorus pesticides in fruit jams. Sep Sci Plus 5:416–423. https://doi.org/10.1002/sscp.202200039

    Article  CAS  Google Scholar 

  121. Cai B, Ye E, Yuan B, Feng Y (2015) Sequential solvent induced phase transition extraction for profiling of endogenous phytohormones in plants by liquid chromatography-mass spectrometry. J Chromatogr B 1004:23–29. https://doi.org/10.1016/j.jchromb.2015.09.031

    Article  CAS  Google Scholar 

  122. Abdallah IA, Hammad SF, Bedair A, Mansour FR (2022) Menthol-assisted homogenous liquid-liquid microextraction for HPLC/UV determination of favipiravir as an antiviral for COVID-19 in human plasma. J Chromatogr B 1189:123087. https://doi.org/10.1016/j.jchromb.2021.123087

    Article  CAS  Google Scholar 

  123. Corazza G, Oenning AL, Bernardi G, Merib J, Carasek E (2021) Exploring the use of switchable hydrophilicity solvents as extraction phase for the determination of food-packaging contaminants in coconut water samples by gas chromatography-mass spectrometry. Food Anal Methods 14:319–330. https://doi.org/10.1007/s12161-020-01876-3

    Article  Google Scholar 

  124. Jessop PG, Mercer SM, Heldebrant DJ (2012) CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ Sci 5:7240. https://doi.org/10.1039/c2ee02912j

    Article  CAS  Google Scholar 

  125. Vanderveen JR, Durelle J, Jessop PG (2014) Design and evaluation of switchable-hydrophilicity solvents. Green Chem 16:1187–1197. https://doi.org/10.1039/C3GC42164C

    Article  CAS  Google Scholar 

  126. Li X, Yang Z, Sui H, Jain A, He L (2018) A hybrid process for oil-solid separation by a novel multifunctional switchable solvent. Fuel 221:303–310. https://doi.org/10.1016/j.fuel.2018.02.081

    Article  CAS  Google Scholar 

  127. Lasarte-Aragonés G, Lucena R, Cárdenas S, Valcárcel M (2015) Use of switchable hydrophilicity solvents for the homogeneous liquid-liquid microextraction of triazine herbicides from environmental water samples. J Sep Sci 38:990–995. https://doi.org/10.1002/jssc.201401224

    Article  CAS  PubMed  Google Scholar 

  128. Behpour M, Nojavan S, Asadi S, Shokri A (2020) Combination of gel-electromembrane extraction with switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction followed by gas chromatography for the extraction and determination of antidepressants in human serum, breast milk and was. J Chromatogr A 1621:461041. https://doi.org/10.1016/j.chroma.2020.461041

    Article  CAS  PubMed  Google Scholar 

  129. Yıldız E, Çabuk H (2022) Determination of the synthetic antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) by matrix acidity-induced switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction (MAI-SHS-HLLME) and high-performance. Anal Lett 55:480–494. https://doi.org/10.1080/00032719.2021.1941072

    Article  CAS  Google Scholar 

  130. Hassan M, Erbas Z, Alshana U, Soylak M (2020) Ligandless reversed-phase switchable-hydrophilicity solvent liquid–liquid microextraction combined with flame-atomic absorption spectrometry for the determination of copper in oil samples. Microchem J 156:104868. https://doi.org/10.1016/j.microc.2020.104868

    Article  CAS  Google Scholar 

  131. Lv H, ** X, Zhang Z, Chen Y, Zhu G, Li Z, Lee M (2022) Ultrasound-assisted switchable hydrophilic solvent-based homogeneous liquid–liquid microextraction for the determination of triazole fungicides in environmental water by GC-MS. Anal Methods 14:1187–1193. https://doi.org/10.1039/D1AY02109E

    Article  CAS  PubMed  Google Scholar 

  132. Rahimi Kakavandi N, Ezoddin M, Abdi K, Ghazi-Khansari M, Amini M, Shahtaheri SJ (2017) Ion-pair switchable-hydrophilicity solvent-based homogeneous liquid-liquid microextraction for the determination of paraquat in environmental and biological samples before high-performance liquid chromatography. J Sep Sci 40:3703–3709. https://doi.org/10.1002/jssc.201700222

    Article  CAS  PubMed  Google Scholar 

  133. Shahraki S, Ahmar H, Nejati-Yazdinejad M (2018) Electrochemical determination of nitrazepam by switchable solvent based liquid-liquid microextraction combined with differential pulse voltammetry. Microchem J 142:229–235. https://doi.org/10.1016/j.microc.2018.07.003

    Article  CAS  Google Scholar 

  134. Wang X, Gao M, Zhang Z, Gu H, Liu T, Yu N, Wang X, Wang H (2018) Development of CO2-mediated switchable hydrophilicity solvent-based microextraction combined with HPLC-UV for the determination of bisphenols in foods and drinks. Food Anal Methods 11:2093–2104. https://doi.org/10.1007/s12161-018-1187-0

    Article  CAS  Google Scholar 

  135. Torbati M, Farajzadeh MA, Torbati M, Nabil AAA, Mohebbi A, Afshar Mogaddam MR (2018) Development of salt and pH–induced solidified floating organic droplets homogeneous liquid–liquid microextraction for extraction of ten pyrethroid insecticides in fresh fruits and fruit juices followed by gas chromatography-mass spectrometry. Talanta 176:565–572. https://doi.org/10.1016/j.talanta.2017.08.074

    Article  CAS  PubMed  Google Scholar 

  136. Hassan M, Alshana U (2019) Switchable-hydrophilicity solvent liquid–liquid microextraction of non-steroidal anti-inflammatory drugs from biological fluids prior to HPLC-DAD determination. J Pharm Biomed Anal 174:509–517. https://doi.org/10.1016/j.jpba.2019.06.023

    Article  CAS  PubMed  Google Scholar 

  137. Asadi T, Rahimi Kakavandi N, Nili Ahmadabadi A, Heshmati A, Ranjbar A, Abdi K, Ezoddin M (2022) Development of effervescence-assisted switchable polarity solvent homogeneous liquid-phase microextraction for the determination of permethrin and deltamethrin in water samples prior to gas chromatography–flame ionization detection. Biomed Chromatogr 36:1–9. https://doi.org/10.1002/bmc.5304

    Article  CAS  Google Scholar 

  138. Reclo M, Yilmaz E, Soylak M, Andruch V, Bazel Y (2017) Ligandless switchable solvent based liquid phase microextraction of nickel from food and cigarette samples prior to its micro-sampling flame atomic absorption spectrometric determination. J Mol Liq 237:236–241. https://doi.org/10.1016/j.molliq.2017.04.066

    Article  CAS  Google Scholar 

  139. Hassan M, Uzcan F, Nasrullah S, Alshana U, Soylak M (2021) Switchable-hydrophilicity solvent liquid-liquid microextraction for sample cleanup prior to dispersive magnetic solid-phase microextraction for spectrophotometric determination of quercetin in food samples. Sustain Chem Pharm 22:100480. https://doi.org/10.1016/j.scp.2021.100480

    Article  CAS  Google Scholar 

  140. Çabuk H, Köktürk M, Ata Ş (2014) PH-assisted homogeneous liquid–liquid microextraction using dialkylphosphoric acid as an extraction solvent for the determination of chlorophenols in water samples. J Sep Sci 37:1343–1351. https://doi.org/10.1002/JSSC.201400158

    Article  PubMed  Google Scholar 

  141. Kiani S, Hossein M, Ahmar H (2018) Development of a new pH assisted homogeneous liquid-liquid microextraction by a solvent with switchable hydrophilicity: application for GC-MS determination of methamphetamine. Talanta 184:103–108. https://doi.org/10.1016/j.talanta.2018.02.115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fotouh R. Mansour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedair, A., Mansour, F.R. (2024). Homogeneous Liquid–Liquid Microextraction. In: Rodríguez-Delgado, M.Á., Socas-Rodríguez, B., Herrera-Herrera, A.V. (eds) Microextraction Techniques. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-50527-0_10

Download citation

Publish with us

Policies and ethics

Navigation