Learning Neural Radiance Fields of Forest Structure for Scalable and Fine Monitoring

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14392))

Included in the following conference series:

  • 300 Accesses

Abstract

This work leverages neural radiance fields and remote sensing for forestry applications. Here, we show neural radiance fields offer a wide range of possibilities to improve upon existing remote sensing methods in forest monitoring. We present experiments that demonstrate their potential to: (1) express fine features of forest 3D structure, (2) fuse available remote sensing modalities and (3), improve upon 3D structure derived forest metrics. Altogether, these properties make neural fields an attractive computational tool with great potential to further advance the scalability and accuracy of forest monitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atchley, A., et al.: Effects of fuel spatial distribution on wildland fire behaviour. Int. J. Wildland Fire 30(3), 179–189 (2021)

    Google Scholar 

  2. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  3. Castorena, J., Creusere, C.D., Voelz, D.: Modeling lidar scene sparsity using compressive sensing. In: 2010 IEEE International Geoscience and Remote Sensing Symposium, pp. 2186–2189. IEEE (2010)

    Google Scholar 

  4. Castorena, J., Dickman, L.T., Killebrew, A.J., Gattiker, J.R., Linn, R., Loudermilk, E.L.: Automated structural-level alignment of multi-view TLS and ALS point clouds in forestry (2023)

    Google Scholar 

  5. Castorena, J., Puskorius, G.V., Pandey, G.: Motion guided lidar-camera self-calibration and accelerated depth upsampling for autonomous vehicles. J. Intell. Robot. Syst. 100(3), 1129–1138 (2020)

    Article  Google Scholar 

  6. Dubayah, R.O., Drake, J.B.: Lidar remote sensing for forestry. J. Forest. 98(6), 44–46 (2000)

    Google Scholar 

  7. FAO, U.: The state of the world’s forests 2020. In: Forests, biodiversity and people, p. 214. Rome, Italy (2020). https://doi.org/10.4060/ca8642en

  8. Gao, W., Tedrake, R.: Filterreg: Robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11095–11104 (2019)

    Google Scholar 

  9. Ge, X., Zhu, Q.: Target-based automated matching of multiple terrestrial laser scans for complex forest scenes. ISPRS J. Photogramm. Remote. Sens. 179, 1–13 (2021)

    Article  Google Scholar 

  10. Hilker, T., et al.: Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees 24(5), 819–832 (2010)

    Article  Google Scholar 

  11. Hyyppä, J.: Advances in forest inventory using airborne laser scanning. Remote Sens. 4(5), 1190–1207 (2012)

    Article  Google Scholar 

  12. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. ACM SIGGRAPH Comput. Graph. 18(3), 165–174 (1984)

    Article  Google Scholar 

  13. Kankare, V., et al.: Estimation of the timber quality of scots pine with terrestrial laser scanning. Forests 5(8), 1879–1895 (2014)

    Article  Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ar**v preprint ar**v:1412.6980 (2014)

  15. Lausch, A., Erasmi, S., King, D.J., Magdon, P., Heurich, M.: Understanding forest health with remote sensing-part ii-a review of approaches and data models. Remote Sens. 9(2), 129 (2017)

    Article  Google Scholar 

  16. Linn, R., Reisner, J., Colman, J.J., Winterkamp, J.: Studying wildfire behavior using FIRETEC. Int. J. Wildland Fire 11(4), 233–246 (2002)

    Article  Google Scholar 

  17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. ar**v preprint ar**v:2003.08934 (2020)

  18. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1-102:15 (2022). https://doi.org/10.1145/3528223.3530127

    Article  Google Scholar 

  19. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  20. Pokswinski, S., et al.: A simplified and affordable approach to forest monitoring using single terrestrial laser scans and transect sampling. MethodsX 8, 101484 (2021)

    Article  Google Scholar 

  21. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Niebner, M.: Dense depth priors for neural radiance fields from sparse input views. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 12892–12901 (2022)

    Google Scholar 

  22. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  23. Tomppo, E., et al.: National forest inventories. Pathways for Common Reporting. European Science Foundation 1, 541–553 (2010)

    Google Scholar 

  24. Vierling, K.T., Vierling, L.A., Gould, W.A., Martinuzzi, S., Clawges, R.M.: Lidar: shedding new light on habitat characterization and modeling. Front. Ecol. Environ. 6(2), 90–98 (2008)

    Article  Google Scholar 

  25. White, J.C., Coops, N.C., Wulder, M.A., Vastaranta, M., Hilker, T., Tompalski, P.: Remote sensing technologies for enhancing forest inventories: a review. Can. J. Remote. Sens. 42(5), 619–641 (2016)

    Article  Google Scholar 

  26. Windrim, L., Bryson, M.: Detection, segmentation, and model fitting of individual tree stems from airborne laser scanning of forests using deep learning. Remote Sens. 12(9), 1469 (2020)

    Article  Google Scholar 

  27. **e, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W.: GRNet: gridding residual network for dense point cloud completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 365–381. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_21

    Chapter  Google Scholar 

Download references

Acknowledgements

Research presented in this article was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number GRR0CSRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Castorena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castorena, J. (2024). Learning Neural Radiance Fields of Forest Structure for Scalable and Fine Monitoring. In: Calvo, H., Martínez-Villaseñor, L., Ponce, H. (eds) Advances in Soft Computing. MICAI 2023. Lecture Notes in Computer Science(), vol 14392. Springer, Cham. https://doi.org/10.1007/978-3-031-47640-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47640-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47639-6

  • Online ISBN: 978-3-031-47640-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation