GRNet: Gridding Residual Network for Dense Point Cloud Completion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Abstract

Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications. Mainstream methods (e.g., PCN and TopNet) use Multi-layer Perceptrons (MLPs) to directly process point clouds, which may cause the loss of details because the structural and context of point clouds are not fully considered. To solve this problem, we introduce 3D grids as intermediate representations to regularize unordered point clouds and propose a novel Gridding Residual Network (GRNet) for point cloud completion. In particular, we devise two novel differentiable layers, named Gridding and Gridding Reverse, to convert between point clouds and 3D grids without losing structural information. We also present the differentiable Cubic Feature Sampling layer to extract features of neighboring points, which preserves context information. In addition, we design a new loss function, namely Gridding Loss, to calculate the L1 distance between the 3D grids of the predicted and ground truth point clouds, which is helpful to recover details. Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is available at https://github.com/hzxie/GRNet.

  2. 2.

    https://completion3d.stanford.edu/results.

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Learning representations and generative models for 3D point clouds. In: ICML 2018 (2018)

    Google Scholar 

  2. Cadena, C., et al.: Past, present, and future of simultaneous localization and map**: toward the robust-perception age. IEEE Trans. Rob. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  3. Dai, A., Qi, C.R., Nießner, M.: Shape completion using 3D-encoder-predictor CNNs and shape synthesis. In: CVPR 2017 (2017)

    Google Scholar 

  4. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR 2017 (2017)

    Google Scholar 

  5. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  6. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: CVPR 2018 (2018)

    Google Scholar 

  7. Han, X., Li, Z., Huang, H., Kalogerakis, E., Yu, Y.: High-resolution shape completion using deep neural networks for global structure and local geometry inference. In: ICCV 2017 (2017)

    Google Scholar 

  8. Hassani, K., Haley, M.: Unsupervised multi-task feature learning on point clouds. In: ICCV 2019 (2019)

    Google Scholar 

  9. Hermosilla, P., Ritschel, T., Vázquez, P., Vinacua, A., Ropinski, T.: Monte Carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans. Graph. 37(6), 235:1–235:12 (2018)

    Google Scholar 

  10. Hua, B., Tran, M., Yeung, S.: Pointwise convolutional neural networks. In: CVPR 2018 (2018)

    Google Scholar 

  11. Jiang, L., Shi, S., Qi, X., Jia, J.: GAL: geometric adversarial loss for single-view 3D-object reconstruction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 820–834. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_49

    Chapter  Google Scholar 

  12. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NIPS 2017 (2017)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015)

    Google Scholar 

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR 2017 (2017)

    Google Scholar 

  15. Lan, S., Yu, R., Yu, G., Davis, L.S.: Modeling local geometric structure of 3D point clouds using Geo-CNN. In: CVPR 2019 (2019)

    Google Scholar 

  16. Lei, H., Akhtar, N., Mian, A.: Octree guided CNN with spherical kernels for 3D point clouds. In: CVPR 2019 (2019)

    Google Scholar 

  17. Li, D., Shao, T., Wu, H., Zhou, K.: Shape completion from a single RGBD image. IEEE Trans. Visual Comput. Graphics 23(7), 1809–1822 (2017)

    Article  Google Scholar 

  18. Li, K., Pham, T., Zhan, H., Reid, I.: Efficient dense point cloud object reconstruction using deformation vector fields. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 508–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_31

    Chapter  Google Scholar 

  19. Li, R., Li, X., Fu, C., Cohen-Or, D., Heng, P.: PU-GAN: a point cloud upsampling adversarial network. In: ICCV 2019 (2019)

    Google Scholar 

  20. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: NeurIPS 2018 (2018)

    Google Scholar 

  21. Lin, C., Kong, C., Lucey, S.: Learning efficient point cloud generation for dense 3D object reconstruction. In: AAAI 2018 (2018)

    Google Scholar 

  22. Lin, H., **ao, Z., Tan, Y., Chao, H., Ding, S.: Justlookup: One millisecond deep feature extraction for point clouds by lookup tables. In: ICME 2019 (2019)

    Google Scholar 

  23. Liu, M., Sheng, L., Yang, S., Shao, J., Hu, S.M.: Morphing and sampling network for dense point cloud completion. In: AAAI 2020 (2020)

    Google Scholar 

  24. Liu, Y., Fan, B., Meng, G., Lu, J., **ang, S., Pan, C.: DensePoint: learning densely contextual representation for efficient point cloud processing. In: ICCV 2019 (2019)

    Google Scholar 

  25. Liu, Y., Fan, B., **ang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: CVPR 2019 (2019)

    Google Scholar 

  26. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel CNN for efficient 3D deep learning. In: NeurIPS 2019 (2019)

    Google Scholar 

  27. Mandikal, P., Radhakrishnan, V.B.: Dense 3D point cloud reconstruction using a deep pyramid network. In: WACV 2019 (2019)

    Google Scholar 

  28. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: ICCV 2019 (2019)

    Google Scholar 

  29. Nguyen, D.T., Hua, B., Tran, M., Pham, Q., Yeung, S.: A field model for repairing 3D shapes. In: CVPR 2016 (2016)

    Google Scholar 

  30. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS 2019 (2019)

    Google Scholar 

  31. Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: CVPR 2019 (2019)

    Google Scholar 

  32. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR 2017 (2017)

    Google Scholar 

  33. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NIPS 2017 (2017)

    Google Scholar 

  34. Sharma, A., Grau, O., Fritz, M.: VConv-DAE: deep volumetric shape learning without object labels. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 236–250. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_20

    Chapter  Google Scholar 

  35. Stutz, D., Geiger, A.: Learning 3D shape completion from laser scan data with weak supervision. In: CVPR 2018 (2018)

    Google Scholar 

  36. Su, H., et al.: SPLATNet: sparse lattice networks for point cloud processing. In: CVPR 2018 (2018)

    Google Scholar 

  37. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? In: CVPR 2019 (2019)

    Google Scholar 

  38. Tchapmi, L.P., Kosaraju, V., Rezatofighi, H., Reid, I.D., Savarese, S.: TopNet: structural point cloud decoder. In: CVPR 2019 (2019)

    Google Scholar 

  39. Thomas, H., Qi, C.R., Deschaud, J., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV 2019 (2019)

    Google Scholar 

  40. Varley, J., DeChant, C., Richardson, A., Ruales, J., Allen, P.K.: Shape completion enabled robotic gras**. In: IROS 2017 (2017)

    Google Scholar 

  41. Wang, K., Chen, K., Jia, K.: Deep cascade generation on point sets. In: IJCAI 2019 (2019)

    Google Scholar 

  42. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38(5), 146:1–146:12 (2019)

    Article  Google Scholar 

  43. Wang, Z., Lu, F.: VoxSegNet: volumetric CNNs for semantic part segmentation of 3D shapes. IEEE Trans. Vis. Comput. Graph. (2019). https://doi.org/10.1109/TVCG.2019.2896310

  44. Wu, W., Qi, Z., Li, F.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR 2019 (2019)

    Google Scholar 

  45. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR 2015 (2015)

    Google Scholar 

  46. **e, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D reconstruction from single and multi-view images. In: ICCV 2019 (2019)

    Google Scholar 

  47. **e, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. Int. J. Comput. Vision 128(12), 2919–2935 (2020). https://doi.org/10.1007/s11263-020-01347-6

    Article  Google Scholar 

  48. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS 2019 (2019)

    Google Scholar 

  49. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  50. Yang, Y., Feng, C., Shen, Y., Tian, D.: FoldingNet: point cloud auto-encoder via deep grid deformation. In: CVPR 2018 (2018)

    Google Scholar 

  51. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: PCN: point completion network. In: 3DV 2018 (2018)

    Google Scholar 

  52. Zhang, K., Hao, M., Wang, J., de Silva, C.W., Fu, C.: Linked dynamic graph CNN: learning on point cloud via linking hierarchical features. ar** Zhang

Authors

Corresponding author

Correspondence to Hongxun Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5323 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

**e, H., Yao, H., Zhou, S., Mao, J., Zhang, S., Sun, W. (2020). GRNet: Gridding Residual Network for Dense Point Cloud Completion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12354. Springer, Cham. https://doi.org/10.1007/978-3-030-58545-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58545-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58544-0

  • Online ISBN: 978-3-030-58545-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation