The Optimization and Parallelization of Two-Dimensional Zigzag Scanning on the Matrix

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14257))

Included in the following conference series:

  • 882 Accesses

Abstract

With the expansion of applications, such as image processing, scientific computing, numerical simulation, biomedicine, social network and so on, enormous quantities of data need to be crunched in order to get the valuable parts and discard redundant ones. For those data represented as two-dimensional digital matrix, two alternative schemes by scanning the elements of the matrix in zigzag route have been proposed. Fixed-point mode and navigation mode used in the proposed schemes are introduced. Performance comparison between the two schemes and previous works are analyzed. The experimental results show that our proposed schemes perform well with large scales of matrices. Moreover, the design of parallel programming based on our proposed scheme has been given. Finally, we have discussed the efficiency of parallelization. The speedup we get is from 3.413 to 3.996, which is stably growth with the scales of matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 69.54
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 87.73
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Messaoudi, A., et al.: DCT-based color image compression algorithm using adaptive block scanning. SIViP 13(9), 1441–1449 (2019)

    Article  Google Scholar 

  2. Zeng, P., Zhang, X.: Classified detection algorithm of zero-quantized DCT coefficient for H.264/AVC. J. Jiangxi Univ. Sci. Technol. 37(1), 87–94 (2016)

    Google Scholar 

  3. Dolati, N., Beheshti, S.A.A., Azagegan, H.: A selective encryption for H.264/AVC videos based on scrambling. Multimed. Tools Appl. 80, 2319–2338 (2021)

    Article  Google Scholar 

  4. Hassan, E., George, L., Mohammed, F.: Color image compression based on DCT, differential pulse coding modulation, and adaptive shift coding. J. Theor. Appl. Inf. Technol. 96(11), 3160–3171 (2018)

    Google Scholar 

  5. Salman, N.H., Rafea, S.: The arithmetic coding and hybrid discrete wavelet and cosine transform approaches in image compression. J. Southwest Jiaotong Univ. 55(1), 1–9 (2020)

    Google Scholar 

  6. Yousif, R.I., Salman, N.H.: Image compression based on arithmetic coding algorithm. Iraqi J. Sci. 62(1), 329–334 (2021)

    Article  Google Scholar 

  7. Xue, J., et al.: 3D DCT based image compression method for the medical endoscopic application. Sensors 21(5), 1817 (2021)

    Article  MathSciNet  Google Scholar 

  8. Li, S.S., Zhao, L., Yang, N.: Medical image encryption based on 2D zigzag confusion and dynamic diffusion. Secur. Commun. Netw. 7, 1–23 (2021)

    Google Scholar 

  9. Qayyum, A., et al.: Chaos-based confusion and diffusion of image pixels using dynamic substitution. IEEE Access 8, 140876–140895 (2020)

    Article  Google Scholar 

  10. Ramasamy, P., et al.: An image encryption scheme based on block scrambling, modified zigzag transformation and key generation using enhanced logistic-tent map. Entropy 21(7), 1–17 (2019)

    Article  MathSciNet  Google Scholar 

  11. Wei, C.C., Boon, C.N., Ahmad, N.S., et al.: Modeling and simulation for transient thermal analyses using a voltage-in-current latency insertion method. J. Electron. Sci. Technol. 4, 383–395 (2022)

    Google Scholar 

  12. Partohaghighi, M., et al.: Numerical simulation of the fractional diffusion equation. Int. J. Mod. Phys. B 37(10), 2350097 (2022)

    Article  Google Scholar 

  13. Win, A.N., Li, M.M.: Numerical method based on fiber bundle for solving Lyapunov matrix equation. Math. Comput. Simul. 193, 556–566 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Su, J., Zhai, A.P., Zhao, W.J., et al.: Hadamard single-pixel imaging using adaptive oblique zigzag sampling. Acta Photonica Sinica 50(3), 0311003 (2021)

    Google Scholar 

  15. Guo, Y., Wang, C.: Improved Zigzag traversal and Lorenz chaotic construction of hash. Opt. Precis. Eng. 29(2), 411–419 (2021)

    Article  MathSciNet  Google Scholar 

  16. Wen, H.P.: Cracking a color image encryption scheme based on Zigzag transformation and chaos. Comput. Appl. Softw. 36(10), 323–333 (2019)

    Google Scholar 

  17. CSDN, https://blog.csdn.net/Shenpibaipao/article/details/78877294. Last accessed 20 Mar 2023

  18. Wang, X., Chen, X.: An image encryption algorithm based on dynamic row scrambling and Zigzag transformation. Chaos, Solitons and Fractals 147(C), 1–22 (2021)

    Google Scholar 

  19. Milosavljevic, N., Morozov, D., Skraba, P.: Zigzag Persistent Homology in Matrix Multiplication Time. In: Proceedings of the 27th annual symposium on computational geometry (SoGC’11), pp. 216–225. ACM, New York, NY (2011)

    Google Scholar 

  20. Zheng, J., et al.: ZM-CTC: covert timing channel construction method based on zigzag matrix. Comput. Commun. 182(15), 212–222 (2022)

    Article  Google Scholar 

  21. Rakotomalala, M., Rakotondraina, T.E., Rakotodramanana, S.: Contribution for improvement of image scrambling technique based on zigzag matrix reodering. Int. J. Comput. Trends Technol. 61(1), 10–17 (2018)

    Article  Google Scholar 

  22. Thefreedictionary, Raster Scan. https://encyclopedia.thefreedictionary.com/raster+scan. Last accessed 20 Mar 2023

  23. Kinoshita, J., et al.: Nonuniformity measurement of image resolution under effect of color speckle for raster-scan RGB laser mobile projector. IEICE Trans. Electr. E105/C(2), 86–94 (2022)

    Google Scholar 

  24. Rashmi, P., Supriya, M.C.: Optimized Chaotic encrypted image based on continuous raster scan method. Global Transitions Proc. 2(2), 589–593 (2021)

    Article  Google Scholar 

  25. Chai, X., Wu, H., Gan, Z., et al.: An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding. Opt. Lasers Eng. 124(1), 105837 (2020)

    Article  Google Scholar 

  26. Wang, H., **ao, D., Li, M., et al.: A visually secure image encryption scheme based on parallel compressive sensing. Signal Process. 155, 218–232 (2019)

    Article  Google Scholar 

  27. Cui, T., et al.: An efficient zigzag scanning and entropy coding architecture design. In: Huet, B., Ngo, C.-W., Tang, J., Zhou, Z.-H., Hauptmann, A.G., Yan, S. (eds.) PCM 2013. LNCS, vol. 8294, pp. 350–358. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03731-8_33

    Chapter  Google Scholar 

  28. Ding, J.-J., Lin, P., Chen, H.: Generalized zigzag scanning algorithm for non-square blocks. In: Lee, K.-T., Tsai, W.-H., Mark Liao, H.-Y., Chen, T., Hsieh, J.-W., Tseng, C.-C. (eds.) MMM 2011. LNCS, vol. 6524, pp. 252–262. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17829-0_24

    Chapter  Google Scholar 

  29. Thefreedictionary, parallel processing. https://www.thefreedictionary.com/parallel+processing. Last accessed 20 Mar 2023

  30. Sur, S., Koop, M., Panda, D.: High-performance and scalable mpi over infiniband with reduced memory usage: an in-depth performance analysis. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pp. 105–117. ACM, New York, NY (2006)

    Google Scholar 

  31. Thefreedictionary, OpenMP. https://encyclopedia.thefreedictionary.com/OpenMP. Last accessed 20 Mar 2023

  32. Openmp.org, OpenMP Compilers & Tools. https://www.openmp.org/resources/openmp-compilers-tools/. Last accessed 20 Mar 2023

  33. An, D., et al.: A novel fast DCT coefficient scan architecture. In: Proceedings of the 27th Conference on Picture Coding Symposium, pp. 273–276. ACM, New York, NY (2009)

    Google Scholar 

  34. Gu, T.: Compression algorithm for electric field data based on two-dimensional lifting wavelet-discrete cosine transform. Comput. Eng. Des. 41(6), 1652–1657 (2020)

    Google Scholar 

  35. Ramanjaneyulu, K., et al.: Robust and oblivious watermarking based on swap** of DCT coefficients. Int. J. Appl. Innov. Eng. Manag. 2(7), 445–452 (2013)

    Google Scholar 

  36. Kong, F., et al.: Learning whole heart mesh generation from patient images for computational simulations. IEEE Trans. Med. Imaging 42(2), 533–545 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported financially by the National Natural Science Foundation of China (NSFC) under grant 61471306 and 61672438. The Natural Science Foundation of Sichuan Province under grant 2022NSFSC0548 and 2023NSFSC 1966, Smart Education Research Fund of Southwest University of Science and Technology under grant 22ZHJYZD02 and 22SXB004, the Education and Teaching Research Project of Sichuan Provincial Education Department under grant JG2021-1414, and the Key R&D Projects of Sichuan Province under grant 2020YFS0360.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaobin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L. et al. (2023). The Optimization and Parallelization of Two-Dimensional Zigzag Scanning on the Matrix. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14257. Springer, Cham. https://doi.org/10.1007/978-3-031-44216-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44216-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44215-5

  • Online ISBN: 978-3-031-44216-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation