MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift, particularly for ultrasound (US) imaging. The quality of US images heavily relies on carefully tuned acoustic parameters, which vary across sonographers, machines, and settings. To improve the generalizability on US images across domains, we propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations; therefore, robust domain-independent segmentation can be expected. Two encoders are employed to extract the relevant features for the disentanglement. The segmentation only uses the anatomical feature map for its prediction. In order to force the encoders to learn meaningful feature representations a cross-reconstruction method is used during training. Transformations, specific to either domain or anatomy are applied to guide the encoders in their respective feature extraction task. Additionally, any MI present in both feature maps is punished to further promote separate feature spaces. We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines. Furthermore, we demonstrate the effectiveness of the proposed MI-SegNet serving as a pre-trained model by comparing it with state-of-the-art networks (The code is available at: https://github.com/yuan-12138/MI-SegNet).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning, pp. 531–540. PMLR (2018)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Cha, J., Lee, K., Park, S., Chun, S.: Domain generalization by mutual-information regularization with pre-trained models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision, ECCV 2022. LNCS, vol. 13683, pp. 440–457. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20050-2_26

  4. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imag. 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  5. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. IV. Commun. Pure Appl. Math. 36(2), 183–212 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, D., Bi, Y., Navab, N., Jiang, Z.: Motion magnification in robotic sonography: enabling pulsation-aware artery segmentation. ar**v preprint ar**v:2307.03698 (2023)

  7. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 172–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  8. Huang, Y., et al.: Online Reflective learning for robust medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13438, pp. 652–662. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16452-1_62

  9. Jiang, Z., Duelmer, F., Navab, N.: DopUS-Net: quality-aware robotic ultrasound imaging based on doppler signal. IEEE Trans. Autom. Sci. Eng. (2023)

    Google Scholar 

  10. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69(6), 066138 (2004)

    Article  MathSciNet  Google Scholar 

  11. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  12. Lezama, J.: Overcoming the disentanglement vs reconstruction trade-off via Jacobian supervision. In: International Conference on Learning Representations (2018)

    Google Scholar 

  13. Liu, X., Yang, C., You, J., Kuo, C.C.J., Kumar, B.V.: Mutual information regularized feature-level Frankenstein for discriminative recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44(9), 5243–5260 (2021)

    Google Scholar 

  14. Meng, Q., et al.: Mutual information-based disentangled neural networks for classifying unseen categories in different domains: application to fetal ultrasound imaging. IEEE Trans. Med. Imag. 40(2), 722–734 (2020)

    Article  MathSciNet  Google Scholar 

  15. Ning, M., et al.: A new bidirectional unsupervised domain adaptation segmentation framework. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 492–503. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_38

    Chapter  Google Scholar 

  16. Peng, X., Huang, Z., Sun, X., Saenko, K.: Domain agnostic learning with disentangled representations. In: International Conference on Machine Learning, pp. 5102–5112. PMLR (2019)

    Google Scholar 

  17. Říha, K., Mašek, J., Burget, R., Beneš, R., Závodná, E.: Novel method for localization of common carotid artery transverse section in ultrasound images using modified Viola-Jones detector. Ultrasound Med. Biol. 39(10), 1887–1902 (2013)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Schlemper, J., et al.: Attention gated networks: learning to leverage salient regions in medical images. Med. Image Anal. 53, 197–207 (2019)

    Article  Google Scholar 

  20. Song, J., et al.: Global and local feature reconstruction for medical image segmentation. IEEE Trans. Med. Imag. 41, 2273–2284 (2022)

    Article  Google Scholar 

  21. Tirindelli, M., Eilers, C., Simson, W., Paschali, M., Azampour, M.F., Navab, N.: Rethinking ultrasound augmentation: a physics-inspired approach. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 690–700. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_66

    Chapter  Google Scholar 

  22. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  23. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  24. Velikova, Y., Simson, W., Salehi, M., Azampour, M.F., Paprottka, P., Navab, N.: CACTUSS: common anatomical CT-US space for US examinations. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention, MICCAI 2022. LNCS, vol. 13433, pp. 492–501. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16437-8_47

  25. Yang, X., et al.: Generalizing deep models for ultrasound image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 497–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_57

    Chapter  Google Scholar 

  26. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115 (2021)

    Article  Google Scholar 

  27. Zhang, L., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans. Med. Imag. 39(7), 2531–2540 (2020)

    Article  Google Scholar 

  28. Zhao, Q., et al.: A multi-modality ovarian tumor ultrasound image dataset for unsupervised cross-domain semantic segmentation. ar**v preprint ar**v:2207.06799 (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongliang Jiang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 183 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, Y., Jiang, Z., Clarenbach, R., Ghotbi, R., Karlas, A., Navab, N. (2023). MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain Generalization. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14223. Springer, Cham. https://doi.org/10.1007/978-3-031-43901-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43901-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43900-1

  • Online ISBN: 978-3-031-43901-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation