Rethinking Ultrasound Augmentation: A Physics-Inspired Approach

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Medical Ultrasound (US), despite its wide use, is characterized by artefacts and operator dependency. Those attributes hinder the gathering and utilization of US datasets for the training of deep neural networks used for computer-assisted intervention systems. Data augmentation is commonly used to enhance model generalization and performance. However, common data augmentation techniques, such as affine transformations do not align with the physics of US and, when used carelessly can lead to unrealistic US images. To this end, we propose a set of physics-inspired transformations, including deformation, reverb and signal-to-noise ratio, that we apply on US B-mode images for data augmentation. We evaluate our method on a new spine US dataset for the tasks of bone segmentation and classification.

M. Tirindelli and C. Eilers—The authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://polyaxon.com/.

  2. 2.

    https://github.com/mariatirindelli/UltrasoundAugmentation.

References

  1. Van Sloun, R.J.G., Cohen, R., Eldar, Y.C.: Deep learning in ultrasound imaging. Proc. IEEE 108(1), 11–29 (2019)

    Article  Google Scholar 

  2. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019)

    Article  Google Scholar 

  3. Goodfellow, I.J., et al.: Generative adversarial networks. ar**v preprint ar**v:1406.2661 (2014)

  4. Zaman, A., Park, S.H., Bang, H., Park, C., Park, I., Joung, S.: Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images. Int J. Cars 15, 931–941 (2020). https://doi.org/10.1007/s11548-020-02192-1

  5. Baka, N., Leenstra, S., van Walsum, T.: Ultrasound aided vertebral level localization for lumbar surgery. IEEE Trans. Med. Imaging 36(10), 2138–2147 (2017). https://doi.org/10.1109/TMI.2017.2738612

    Article  Google Scholar 

  6. Duong, D.Q., et al.: Fully automated segmentation of alveolar bone using deep convolutional neural networks from intraoral ultrasound images. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 6632–6635 (2019). https://doi.org/10.1109/EMBC.2019.8857060

  7. Hohlmann, B., Glanz, J., Radermacher, K.: Segmentation of the distal femur in ultrasound images. Curr. Dir. Biomed. Eng. 6(1), 20200034 (2020)

    Article  Google Scholar 

  8. Qi, X., Voar, N., Riera, L., Sarangi, A., Youssef, G., Vives, M., Hacihaliloglu, I.: Automatic Scan Plane Identification from 2D Ultrasound for Pedicle Screw Guidance. In: CAOS 2018 (EPiC Series in Health Sciences, vol. 2), pp. 168–174 (2018)

    Google Scholar 

  9. Benjdira, B., Ouni, K., Al Rahhal, M.M., Albakr, A., Al-Habib, A., Mahrous, E.: Spinal cord segmentation in ultrasound medical imagery. Appl. Sci. 10(4), 1370 (2020)

    Article  Google Scholar 

  10. Alsinan, A. Z., Vives, M., Patel, V., Hacihaliloglu, I.: Spine surface segmentation from ultrasound using multi-feature guided CNN. In: CAOS 2019 (EPiC Series in Health Sciences), vol. 3, pp. 6–10 (2019)

    Google Scholar 

  11. Nguyen, K.C.T., et al.: Alveolar bone segmentation in intraoral ultrasonographs with machine learning. J. Dental Res. 99(9), 1054–1061 (2020). https://doi.org/10.1177/0022034520920593

    Article  Google Scholar 

  12. Patel, H., Hacihaliloglu, I.: Improved automatic bone segmentation using large-scale simulated ultrasound data to segment real ultrasound bone surface data. In: IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Cincinnati, OH, USA, pp. 288–294 (2020). https://doi.org/10.1109/BIBE50027.2020.00054

  13. Luan, K., Li, Z., Li, J.: An efficient end-to-end CNN for segmentation of bone surfaces from ultrasound. In: Computerized Medical Imaging and Graphics, vol. 84, p. 101766 (2020), ISSN 0895–6111. https://doi.org/10.1016/j.compmedimag.2020.101766

  14. Ungi, T., et al.: Automatic spine ultrasound segmentation for scoliosis visualization and measurement. IEEE Trans. Biomed. Eng. 67(11), 3234–3241 (2020). https://doi.org/10.1109/TBME.2020.2980540

  15. Bridge, C.P., Noble, J.A.: Object localisation in fetal ultrasound images using invariant features. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 156–159. IEEE (2015)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  18. Tirindelli, M., et al.: Force-ultrasound fusion: bringing spine robotic-us to the next “level.” IEEE Robot. Autom. Lett. 5(4), 5661–5668 (2020)

    Google Scholar 

  19. Esteban, J., et al.: Robotic ultrasound-guided facet joint insertion. Int. J. Comput. Assist. Radiol. Surg. 13(6), 895–904 (2018)

    Article  Google Scholar 

  20. Hase, H., et al.: Ultrasound-guided robotic navigation with deep reinforcement learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2020)

    Google Scholar 

  21. Wang, P., Vives, M., Patel, V.M., Hacihaliloglu, I.: Robust real-time bone surfaces segmentation from ultrasound using a local phase tensor-guided CNN. Int. J. Comput. Assist. Radiol. Surg. 15, 1127–1135 (2020)

    Article  Google Scholar 

  22. Wang, P., Patel, V.M., Hacihaliloglu, I.: Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 134–142. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_16

    Chapter  Google Scholar 

  23. Hetherington, J., Lessoway, V., Gunka, V., Abolmaesumi, P., Rohling, R.: SLIDE: automatic spine level identification system using a deep convolutional neural network. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1189–1198 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This paper was partially funded by the Bayerische Forschungsstiftung, under Grant DOK-180-19, as well as the H2020 EU grant 688279 (EDEN2020) and the German Central Innovation Program for Small and Medium-sized Enterprises under grant agreement ZF4190502CR8 (PUMBA). We would also like to thank NVIDIA for the GPU donation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Eilers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tirindelli, M., Eilers, C., Simson, W., Paschali, M., Azampour, M.F., Navab, N. (2021). Rethinking Ultrasound Augmentation: A Physics-Inspired Approach. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12908. Springer, Cham. https://doi.org/10.1007/978-3-030-87237-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87237-3_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87236-6

  • Online ISBN: 978-3-030-87237-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation