Microbes, Metal(Loid)s and Microbe–Metal(Loid) Interactions in the Context of Mining Industry

  • Chapter
  • First Online:
Biotechnological Innovations in the Mineral-Metal Industry

Abstract

Mining activities generate large quantities of wastes which pose threat to aquatic life, environment and human health, if left untreated. The generation of large quantities of wastewater with low concentrations of metals (for example: 10 mg/L Te(IV) in used solar cell leachate; 5–30 mg/L Cr, 0.14–21 mg/L Cu, 0.2–30 mg/L Ni, and 0.2–28 mg/L Zn in electroplating wastewater) makes the biological treatment processes more attractive, over physicochemical processes. Often, these wastes are laden with critical, scarce metals and are considered as resource due to their limited availability, cost and intended applications. Metal–microbe interactions through various redox reactions and acid-producing metabolism allow the extraction of base metals from ores. In the industrial biomining and bioleaching processes, microbes are employed for metal extraction from ores and the same can be applied for extraction of precious metals from low-grade ores, solid wastes and mine tailings. This book chapter presents an overview of metal–microbe interactions for potential biotechnological applications in the treatment of metal laden wastes generated in mining activities. These metal-microbe interactions include mobilisation (biomining) and immobilisation (biosorption, bioaccumulation, bioreduction and bioprecipitation) of metal ions present in different forms of wastes. Up to date studies on different microorganisms and biofilm systems employed for successful treatment and recovery of metals from wastes have been included along with underlying biochemical process. The chapter ends with a discussion on sustainable technological platforms such as bioelectrochemical systems, wherein the oxidation of organic contaminants in wastewater is coupled to the removal and recovery of metal ions from metal-bearing wastewater. Important studies on bioelectrochemical systems for the recovery of metal ions and associated removal mechanisms are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agboola, O., Babatunde, D. E., Fayomi, O. S. I., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A., & Mamudu, O.-A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181.

    Article  Google Scholar 

  • Ahemad, M., & Malik, A. (2011). Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Journal of Bacteriology, 2, 12–21.

    Article  Google Scholar 

  • Ahmed, E., Abdulla, H. M., Mohamed, A. H., & El-Bassuony, A. D. (2016). Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Safety and Environment Protection, 104, 1–10.

    Article  CAS  Google Scholar 

  • Ai, C., Yan, Z., Hou, S., Huo, Q., Chai, L., Qiu, G., & Zeng, W. (2020). Sequentially recover heavy metals from smelting wastewater using bioelectrochemical system coupled with thermoelectric generators. Ecotoxicology and Environment Safety, 205, 111174.

    Article  CAS  Google Scholar 

  • Aiyer, K. S. (2020). Recovery of chromium, copper and vanadium combined with electricity generation in two-chambered microbial fuel cells. FEMS Microbiology Letters, 367, fnaa129.

    Google Scholar 

  • Alalwan, H. A., Kadhom, M. A., & Alminshid, A. H. (2020). Removal of heavy metals from wastewater using agricultural by products. Journal of Water Supply: Research Technology—AQUA, 69, 99–112.

    Google Scholar 

  • Ali, J., Wang, L., Waseem, H., Sharif, H. M. A., Djellabi, R., Zhang, C., & Pan, G. (2019). Bioelectrochemical recovery of silver from wastewater with sustainable power generation and its reuse for biofouling mitigation. Journal of Cleaner Production, 235, 1425–1437.

    Article  CAS  Google Scholar 

  • Amanze, C., Zheng, X., Man, M., Yu, Z., Ai, C., Wu, X., et al. (2022). Recovery of heavy metals from industrial wastewater using bio-electrochemical system inoculated with novel Castellaniella species. Environmental Research, 205, 112467.

    Article  CAS  Google Scholar 

  • Aryal, M. (2020). A comprehensive study on the bacterial biosorption of heavy metals: Materials, performances, mechanisms, and mathematical modelling. Reviews in Chemical Engineering, 20190016.

    Google Scholar 

  • Bakhtiari, F., Zivdar, M., Atashi, H., & Seyed, B. S. (2010). Continuous bioleaching of copper from copper smelters dust with a mixed culture of mesophilic bacteria. Journal of Chemical Society of Pakistan, 32, 215–222.

    CAS  Google Scholar 

  • Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.

    Article  CAS  Google Scholar 

  • Bayat, O., Sever, E., Bayat, B., Arslan, V., & Poole, C. (2009). Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Applied Biochemistry and Biotechnology, 152, 117–126.

    Article  CAS  Google Scholar 

  • Beni, A. A., & Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A Review. Environmental Technology and Innovation, 17, 100503.

    Article  CAS  Google Scholar 

  • Benzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., & Ferard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343, 160–167.

    Article  CAS  Google Scholar 

  • Cao, J., Zhang, G., Mao, Z., Fang, Z., & Yang, C. (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Minerals Engineering, 22(3), 289–295.

    Article  CAS  Google Scholar 

  • Capeness, M. J., Edmundson, M. C., & Horsfall, L. E. (2015). Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. New Biotechnology, 32, 727–731.

    Article  CAS  Google Scholar 

  • Catal, T., Bermek, H., & Liu, H. (2009). Removal of selenite from wastewater using microbial fuel cells. Biotechnology Letters, 31, 1211–1216.

    Article  CAS  Google Scholar 

  • Cheng, Y., Guo, Z., Liu, X., Yin, H., Qiu, G., Pan, F., & Liu, H. (2009). The bioleaching feasibility for Pb/Zn smelting slag and community characteristics of indigenous moderate-thermophilic bacteria. Bioresource Technology, 100, 2737–2740.

    Article  CAS  Google Scholar 

  • Choi, C., & Cui, Y. (2012). Recovery of silver from wastewater coupled with power generation using a microbial fuel cell. Bioresource Technology, 107, 522–525.

    Article  CAS  Google Scholar 

  • Choi, C., & Hu, N. (2013). The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresource Technology, 133, 589–598.

    Article  CAS  Google Scholar 

  • Choi, C., Hu, N., & Lim, B. (2014). Cadmium recovery by coupling double microbial fuel cells. Bioresource Technology, 170, 361–369.

    Article  CAS  Google Scholar 

  • Choi, H. J., & Lee, S. M. (2015). Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system. Environmental Science and Pollution Research, 22, 13404–13411.

    Article  CAS  Google Scholar 

  • Cidu, R. (2011). Mobility of aqueous contaminants at abandoned mining sites: Insights from case studies in Sardinia with implications for remediation. Environment and Earth Science, 64, 503–512.

    Article  CAS  Google Scholar 

  • Creedy, S., Glinin, A., Matusewicz, R., Hughes, S., & Reuter, M. (2013). Ausmelt technology for treating zinc residues. World Metall-Erzmetall, 66, 230–235.

    CAS  Google Scholar 

  • Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2006). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50, 40–57.

    Article  Google Scholar 

  • Diep, P., Mahadevan, R., & Yakunin, A. F. (2018). Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Frontiers in Bioengineering and Biotechnology, 6, 157.

    Article  Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.

    Article  CAS  Google Scholar 

  • El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A., & Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. Scientific World Journal, 761834, 1–14.

    Article  Google Scholar 

  • Esposito, G., Veeken, A., Weijma, J., & Lens, P. N. L. (2006). Use of biogenic sulfide for ZnS precipitation. Separation and Purification Technology, 51, 31–39.

    Article  CAS  Google Scholar 

  • Farkas, B., Bujdoš, M., Polák, F., Matulová, M., Cesnek, M., Duborská, E., Zvěřina, O., Kim, H., Danko, M., Kisová, Z., Matúš, P., Urík, M. (2021). Bioleaching of manganese oxides at different oxidation states by filamentous fungus Aspergillus niger. Journal of Fungi (Basel), 7, 808.

    Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92, 407–418.

    Article  CAS  Google Scholar 

  • Gadd, M. (2010). Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology, 156, 603–643.

    Article  Google Scholar 

  • Gorai, B., Jana, R. K., Premchand. (2003). Characteristics and utilization of copper slags-a review. Resources, Conservation and Recycling, 39, 299–313.

    Google Scholar 

  • Hao, L., Zhang, B., Tian, C., Liu, Y., Shi, C., Cheng, M., & Feng, C. (2015). Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells. Journal of Power Sources, 287, 43–49.

    Article  CAS  Google Scholar 

  • Hennebel, T., Boon, N., Maes, S., & Lenz, M. (2015). Biotechnologies for critical raw material recovery from primary and secondary sources: R&D priorities and future perspectives. New Biotechnology, 32, 121–127.

    Article  CAS  Google Scholar 

  • Hita, R., Wang, H., Bigham, J. M., Torrent, J., & Tuovinen, O. H. (2008). Bioleaching of a pyritic sludge from the Aznalcollar (Spain) mine spillage at ambient and elevated temperatures. Hydrometallurgy, 93, 76–79.

    Article  CAS  Google Scholar 

  • Horiike, T., & Yamashita, M. (2015). A new fungal isolate, Penidiella sp. strain T9, accumulates the rare earth element dysprosium. Applied and Environment Microbiology, 81, 3062–3068.

    Article  CAS  Google Scholar 

  • Huang, L., Li, T., Liu, C., Quan, X., Chen, L., Wang, A., & Chen, G. (2013). Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresource Technology, 128, 539–546.

    Article  CAS  Google Scholar 

  • Huang, L., Yao, B., Wu, D., & Quan, X. (2014). Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. Journal of Power Sources, 259, 54–64.

    Article  CAS  Google Scholar 

  • Ilyas, S., & Lee, J. C. (2014). Biometallurgical recovery of metals from waste electrical and electronic equipment: A review. ChemBioEng Reviews, 1, 148–169.

    Article  Google Scholar 

  • Jiang, L., Huang, L., & Sun, Y. (2014). Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 39, 654–663.

    Article  CAS  Google Scholar 

  • **g, R., & Kjellerup, B. V. (2018). Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. Journal of Environmental Sciences (china), 66, 146–154.

    Article  CAS  Google Scholar 

  • Johnson, D. B. (2013). Development and application of biotechnologies in the metal mining industry. Environmental Science and Pollution Research International, 20(11), 7768–7776.

    Article  Google Scholar 

  • Johnson, D. B., Grail, B. M., & Hallberg, K. B. (2013). A new direction for biomining: Extraction of metals by reductive dissolution of oxidized ores. Minerals, 3, 49–58.

    Article  CAS  Google Scholar 

  • Kaksonen, A. H., Lavonen, L., Kuusenaho, M., Kolli, A., N€arhi, H., Vestola, E., Puhakka, J. A., Tuovinen, O. H. (2011). Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Minerals Engineering, 24, 1113–1121.

    Google Scholar 

  • Kaksonen, A. H., Särkijärvi, S., Puhakka, J. A., Peuraniemi, E., Junnikkala, S., & Tuovinen, O. H. (2016). Chemical and bacterial leaching of metals from a smelter slag in acid solutions. Hydrometallurgy, 159, 46–53.

    Article  CAS  Google Scholar 

  • Kim, C., Lee, C. R., Song, Y. E., Heo, J., Choi, S. M., Lim, D.-H., Cho, J., Park, C., Jang, M., & Kim, J. R. (2017). Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater. Chemical Engineering Journal, 2017(328), 703–707.

    Article  Google Scholar 

  • Korehi, H., Blothe, M., Sitnikova, M. A., Dold, B., & Schippers, A. (2013). Metal mobilization by iron-and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Environmental Science and Technology, 47, 2189–2196.

    Article  CAS  Google Scholar 

  • Kosinska, K., & Miskiewicz, T. (2012). Precipitation of heavy metals from industrial wastewater by Desulfovibrio desulfuricans. Environmental Protection Engineering, 38(2), 51–60.

    Article  CAS  Google Scholar 

  • Kossoff, D., Dubbin, W. E., Alfredsson, M., Edwards, S. J., Macklin, M. G., & Hudson-Edwards, K. A. (2014). Mine tailings dams: Characteristics, failure, environmental impacts, and remedi- ation. Applied Geochemistry, 51, 229–245.

    Article  CAS  Google Scholar 

  • Kulkarni, S., Ballal, A., & Apte, S. K. (2013). Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. Journal of Hazardous Materials, 262, 853–861.

    Article  CAS  Google Scholar 

  • Kwak, I. S., Won, S. W., Chung, Y. S., & Yun, Y. S. (2013). Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresource Technology, 128, 30–35.

    Article  CAS  Google Scholar 

  • Langkau, S., & Tercero Espinoza, L. A. (2018). Technological change and metal demand over time: What can we learn from the past? Sustainable Materials and Technologies, 16, 54–59.

    Article  Google Scholar 

  • Lee, E., Han, Y., Park, J., Hong, J., Silva, R. A., Kim, S., & Kim, H. (2015). Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. Journal of Environmental Management, 147, 124–131.

    Article  CAS  Google Scholar 

  • Li, Z. J., Zhang, X. W., & Lei, L. C. (2008). Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry, 43, 1352–1358.

    Article  CAS  Google Scholar 

  • Lim, S. S., Fontmorin, J. M., Pham, H. T., Milner, E., Abdul, P. M., Scott, K., Head, I., & Yu, E. H. (2021). Zinc removal and recovery from industrial wastewater with a microbial fuel cell: Experimental investigation and theoretical prediction. Science of the Total Environment, 776, 145934.

    Article  CAS  Google Scholar 

  • Liu, Y. G., Zhou, M., Zeng, G. M., Wang, X., Li, X., Fan, T., & Xu, W. H. (2008). Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresource Technology, 99, 4124–4129.

    Article  CAS  Google Scholar 

  • Lloyd, J. R. (2003). Microbial reduction of metals and radionuclides. FEMS Microbiology Reviews, 27, 411–425.

    Article  CAS  Google Scholar 

  • Luo, H., Liu, G., Zhang, R., Bai, Y., Fu, S., & Hou, Y. (2014). Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials, 270, 153–1159.

    Article  CAS  Google Scholar 

  • Mansfeldt, T., & Dohrmann, R. (2004). Chemical and mineralogical characterization of blast furnace sludge from an abandoned landfill. Environmental Science and Technology, 38, 5977–5984.

    Article  CAS  Google Scholar 

  • Massianaie, M., Oliazadeh, M., & Bagheri, A. S. (2006). Biological copper extraction from melting furnace dust of Sarcheshmeh copper mine. International Journal of Mineral Processing, 81, 58–62.

    Article  Google Scholar 

  • Mishra, D., Kim, D. J., Ahn, J. G., & Rhee, Y. H. (2005). Bioleaching: A microbial process of metal recovery; A review. Metals and Materials International, 11, 249–256.

    Article  CAS  Google Scholar 

  • Mudd, G. M. (2008). Sustainability reporting and water resources: A preliminary assessment of embodied water and sustainable mining. Mine Water and the Environment, 27, 136–144.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., Galvez-Cloutier, R., & Renaud, N. (1999). Biological leaching of copper mine residues by Aspergillus Niger. Process Metall., 9, 453–461.

    Article  Google Scholar 

  • Mulligan, C. N., Kamali, M., & Gibbs, B. F. (2004). Bioleaching of heavy metals from a low-grade mining ore using Aspergillus niger. Journal of Hazardous Materials, 110, 77–84.

    Article  CAS  Google Scholar 

  • Nancharaiah, Y. V., & Lens, P. N. L. (2015a). Ecology and biotechnology of selenium respiring bacteria. Microbiology and Molecular Biology Reviews, 79, 61–80.

    Article  CAS  Google Scholar 

  • Nancharaiah, Y. V., & Lens, P. N. L. (2015b). Selenium biomineralization for biotechnological applications. Trends in Biotechnology, 33, 323–330.

    Article  CAS  Google Scholar 

  • Nancharaiah, Y. V., Sarvajith, M., Lens, P. N. L. (2018). Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. Water Research, 131, 131–141.

    Google Scholar 

  • Nancharaiah, Y. V., Venkata Mohan, S., & Lens, P. N. L. (2015). Metals removal and recovery in bioelectrochemical systems: A review. Bioresource Technology, 195, 102–114.

    Article  CAS  Google Scholar 

  • Nancharaiah, Y. V., Venkata Mohan, S., & Lens, P. N. L. (2016). Biological and bioelectrochemical recovery of critical and scarce metals. Trends in Biotechnology, 34, 137–155.

    Article  CAS  Google Scholar 

  • Newsome, L., Morris, K., & Lloyd, J. R. (2014). The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chemical Geology, 363, 164–184.

    Article  CAS  Google Scholar 

  • Nguyen, V. K., Lee, M. H., Park, H. J., & Lee, J. U. (2015). Bioleaching of arsenic and heavy metals from mine tailings by pure and mixed cultures of Acidithiobacillus spp. Journal of Industrial and Engineering Chemistry, 21, 451–458.

    Article  CAS  Google Scholar 

  • Park, I., Tabelin, C. B., Jeon, S., Li, X., Seno, K., Ito, M., & Hiroyoshi, N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606.

    Article  CAS  Google Scholar 

  • Paterson-Beedle, M., Readman, J. E., Hriljac, J. A., & Macaskie, L. E. (2010). Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy, 104, 524–528.

    Article  CAS  Google Scholar 

  • Petrisor, I. G., Komnitsas, K., Lazar, I., Voicu, A., Dobrota, S., & Stefanescu, M. (2002). Biosorption of heavy metals from leachates generated at mine waste disposal sites. European Journal of Mineral Processing Environmental Protection, 2, 158–167.

    CAS  Google Scholar 

  • Philip, L., Iyengar, L., & Venkobachar, C. (2000). Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa. Journal of Industrial Microbiology and Biotechnology, 25, 1–7.

    Article  CAS  Google Scholar 

  • Potysz, A., van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N. L., & Guibaud, G. (2015). Copper metallurgical slags-current knowledge and fate: A review. Critical Reviews in Environment Science and Technology, 45, 2424–2488.

    Article  CAS  Google Scholar 

  • Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water, 4, 36.

    Google Scholar 

  • Qin, B., Luo, H., Liu, G., Zhang, R., Chen, S., Hou, Y., & Luo, Y. (2012). Nickel ion removal from wastewater using the microbial electrolysis cell. Bioresource Technology, 121, 458–461.

    Article  CAS  Google Scholar 

  • Rajwade, J. M., & Paknikar, K. M. (2003). Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy, 71, 243–248.

    Article  CAS  Google Scholar 

  • Reddy, G. K. K., & Nancharaiah, Y. V. (2018). Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor. Environmental Science and Pollution Research, 25, 1969–1979.

    Article  Google Scholar 

  • Reddy, G. K. K., & Nancharaiah, Y. V. (2019). Biofilm and granular sludge bioreactors for textile wastewater treatment. Microbial Biofilms in Bioremediation and Wastewater Treatment. CRC Press.

    Google Scholar 

  • Reddy, G. K. K., Nancharaiah, Y. V., & Mohan, T. V. K. (2016). Bioreduction of [Co(III)-EDTA]—By denitrifying granular sludge biofilms. Chemical Engineering and Technology, 39, 1669–1675.

    Article  CAS  Google Scholar 

  • Reddy, G. K. K., Pathak, S., & Nancharaiah, Y. V. (2023). Aerobic reduction of selenite and tellurite to elemental selenium and tellurium nanostructures by Alteromonas sp. under saline conditions. International Biodeterioration and Biodegradation, 179, 105571.

    Google Scholar 

  • Rikame, S. S., Mungray, A. A., & Mungray, A. K. (2021). Electrochemical recovery of metal copper in microbial fuel cell using graphene oxide/polypyrrole cathode catalyst. International Journal of Energy Research, 45, 6863–6875.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102, 324–333.

    Article  CAS  Google Scholar 

  • Sethurajan, M., Lens, P. N. L., Rene, E. R., van de Vossenberg, J., Huguenot, D., Horn, H. A., Figueiredo, L. H., & van Hullebusch, E. D. (2017a). Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Tres Marias zinc plant (Minas Gerais, Brazil). Journal of Chemical Technology and Biotechnology, 3(92), 512–521.

    Article  Google Scholar 

  • Sethurajan, M., Lens, P. N. L., Rene, E. R., van de Vossenberg, J., Huguenot, D., Horn, H. A., Figueiredo, L. H., & van Hullebusch, E. D. (2017b). Bioleaching and selective biorecovery of zinc from zinc metallurgical leach residues from the Tres Marias zinc plant (Minas Gerais, Brazil). Journal of Chemical Technology and Biotechnology, 3(92), 512–521.

    Article  Google Scholar 

  • Sethurajan, M., van Hullebusch, E. D., & Nancharaiah, Y. V. (2018). Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. Journal of Environmental Management, 211, 138–153.

    Article  CAS  Google Scholar 

  • Simmons, J. A., Currie, W. S., Eshleman, K. N., Kuers, K., Monteleone, S., Negley, T. L., Pohlad, B. R., & Thomas, C. L. (2008). Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications, 18, 104–118.

    Article  Google Scholar 

  • Singh, A., & Kaushik, A. (2022). Removal of Cd and Ni with enhanced energy generation using biocathode microbial fuel cell: Insights from molecular characterization of biofilm communities. Journal of Cleaner Production, 315, 127940.

    Article  Google Scholar 

  • Smith, D., & Wentworth, J. (2022). POST (Parliamentary Office of Science and Technology), POSTbrief 45, Mining and the sustainability of metals. UK Parliament.

    Google Scholar 

  • Song, Y. W., Wang, H. R., Yang, J., Zhou, L. X., Zhou, J. C., & Cao, Y. X. (2018). Evaluation and optimization of a new microbial enhancement plug-flow ditch system for the pretreatment of acid mine drainage: Semi-pilot test. RSC Advances, 8, 1039–1046.

    Article  CAS  Google Scholar 

  • Sravan, J. S., & Mohan, S. V. (2022). Bioelectrocatalytic reduction of tellurium oxyanions toward their cathodic recovery: Concentration dependence and anodic electrogenic activity. ACS ES&T Water, 2, 40–51.

    Article  CAS  Google Scholar 

  • Sravan, J. S., Nancharaiah, Y. V., Lens, P. N. L., & Mohan, S. V. (2020). Cathodic selenium recovery in bioelectrochemical system: Regulatory influence on anodic electrogenic activity. Journal of Hazardous Materials, 399, 122843.

    Article  CAS  Google Scholar 

  • Suja, E., Nancharaiah, Y. V., & Venugopalan, V. P. (2014). Biogenic nanopalladium production by self-immobilized granular biomass: Application for contaminant remediation. Water Research, 65, 395–401.

    Article  CAS  Google Scholar 

  • Sukla, L. B., Kar, R. N., & Panchanadikar, V. (1995). Bioleaching of copper converter slags using Aspergillus niger isolated from lateritic nickel ore. International Journal of Environmental Studies, 47, 81–86.

    Article  CAS  Google Scholar 

  • Tao, H.-C., Gao, Z.-Y., Ding, H., Xu, N., & Wu, W.-M. (2012). Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors. Bioresource Technology, 111, 92–97.

    Article  CAS  Google Scholar 

  • Tao, H.-C., Lei, T., Shi, G., Sun, X.-N., Wei, X.-Y., Zhang, L.-J., & Wu, W.-M. (2014). Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials, 264, 1–7.

    Article  CAS  Google Scholar 

  • Tao, H.-C., Liang, M., Li, W., Zhang, L.-J., Ni, J.-R., & Wu, W.-M. (2011). Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Journal of Hazardous Materials, 189, 186–192.

    Article  CAS  Google Scholar 

  • Ter Heijne, A., Liu, F., Weijden, R. V., Weijma, J., Buisman, C. J., & Hamelers, H. V. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science and Technology, 44, 4376–4381.

    Article  Google Scholar 

  • Thauer, R. K., Stackebrandt, E., & Hamilton, W. A. (2007). Energy metabolism and phylogenetic diversity of sulphate-reducing bacteria. In Sulphate-reducing bacteria: Environmental and engineered systems (1st ed., pp. 1–37). Cambridge: Cambridge University Press.

    Google Scholar 

  • Tripathi, M., & Garg, S. K. (2014). Dechlorination of chloroorganics, decolorization, and simultaneous bioremediation of Cr6+ from real tannery effluent employing indigenous Bacillus cereus isolate. Environmental Science and Pollution Research, 21, 5227–5241.

    Article  CAS  Google Scholar 

  • US EPA, Priority pollutants. Appendix A to 40 CFR Part 423. Available from: http://water.epa.gov/scitech/methods/cwa/pollutants.cfm

  • Vachon, P., Tyagi, R. D., Auclair, J. C., & Wilkinson, K. J. (1994). Chemical and biological leaching of aluminum from red mud. Environmental Science and Technology, 28, 26–30.

    Article  CAS  Google Scholar 

  • Vakilchap, F., Mousavi, S. M., & Shojaosadati, S. A. (2016). Role of Aspergillus Niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresource Technology, 218, 991–998.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Velvizhi, G., Annie Modestra, J., & Srikanth, S. (2014a). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advances. Renewable and Sustainable Energy Reviews, 40, 779–797.

    Article  CAS  Google Scholar 

  • Venkata Mohan, S., Velvizhi, G., Vamshi Krishna, K., & Lenin Babu, M. (2014b). Microbial catalyzed electrochemical systems: A bio-factory with multi-facet applications. Bioresource Technology, 165, 355–364.

    Article  CAS  Google Scholar 

  • Wadgaonkar, S. L., Mal, J., Nancharaiah, Y. V., Maheshwari, N. O., Esposito, G., & Lens, P. N. L. (2018). Formation of Se(0), Te(0), and Se(0)–Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Applied Microbiology and Biotechnology, 102, 2899–2911.

    Article  CAS  Google Scholar 

  • Wang, G., Huang, L., & Zhang, Y. (2008). Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnology Letters, 30, 1959–1966.

    Article  CAS  Google Scholar 

  • Wang, H., & Ren, Z. J. (2014). Bioelectrochemical metal recovery from wastewater: A review. Water Research, 66, 219–232.

    Article  CAS  Google Scholar 

  • Wang, J., Huang, Q., Li, T., **n, B., Chen, S., Guo, X., Liu, C., & Li, Y. (2015). Bioleaching mechanism of Zn, Pb, In, Ag, Cd and as from Pb/Zn smelting slag by autotrophic bacteria. Journal of Environmental Management, 159, 11–17.

    Article  CAS  Google Scholar 

  • Wang, J., Zhu, S., Zhang, Y., Zhao, H., Hu, M., Yang, C., Qin, W., & Qiu, G. (2014). Bioleaching of low-grade copper sulfide ores by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Journal of Central South University, 21, 728–734.

    Article  CAS  Google Scholar 

  • Wang, S., Liu, T., **ao, X., & Luo, S. (2021). Advances in microbial remediation for heavy metal treatment: A mini review. Journal of Leather Science and Engineering, 3, 1.

    Article  Google Scholar 

  • Wang, Z., Lim, B., & Choi, C. (2011). Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology, 102, 6304–6307.

    Article  CAS  Google Scholar 

  • Williamson, A., Folens, K., Matthijs, S., Paz Cortes, Y., Varia, J., Du Laing, G., Boon, N., & Hennebel, T. (2021). Selective metal extraction by biologically produced siderophores during bioleaching from low-grade primary and secondary mineral resources. Minerals Engineering, 163, 106774.

    Article  CAS  Google Scholar 

  • Won, S. W., Kwak, I. S., & Yun, Y. S. (2014). The role of biomass in polyethylenimine-coated chitosan/bacterial biomass composite biosorbent fiber for removal of Ru from acetic acid waste solution. Bioresource Technology, 160, 93–97.

    Article  CAS  Google Scholar 

  • Wu, X., Zhu, X., Song, T., Zhang, L., Jia, H., & Wei, P. (2015). Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell. Bioresource Technology, 180, 185–191.

    Article  CAS  Google Scholar 

  • Ye, J., Yin, H., Mai, B., Peng, H., Qin, H., He, B., & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresource Technology, 101, 3893–3902.

    Article  CAS  Google Scholar 

  • Yong, P., Rowson, N. A., Farr, J. P., Harris, I. R., & Macaskie, L. E. (2003). A novel electrobiotechnology for the recovery of precious metals from spent automotive catalysts. Environmental Technology, 24, 289–297.

    Article  CAS  Google Scholar 

  • Zhang, B., Zhao, H., Shi, C., Zhou, S., & Ni, J. (2009). Simultaneous removal of sulfide and organics with vanadium (V) reduction in microbial fuel cells. Journal of Chemical Technology and Biotechnology, 84, 1780–1786.

    Article  CAS  Google Scholar 

  • Zhang, L., Xu, Z., & He, X. (2020). Selective recovery of lead and zinc through controlling cathodic potential in a bioelectrochemically-assisted electrodeposition system. Journal of Hazardous Materials, 386, 121941.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Nancharaiah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kiran Kumar Reddy, G., Nancharaiah, Y.V. (2024). Microbes, Metal(Loid)s and Microbe–Metal(Loid) Interactions in the Context of Mining Industry. In: Panda, S., Mishra, S., Akcil, A., Van Hullebusch, E.D. (eds) Biotechnological Innovations in the Mineral-Metal Industry. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43625-3_1

Download citation

Publish with us

Policies and ethics

Navigation