Log in

Bioleaching: A microbial process of metal recovery; A review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present review describes the historical development and mechanisms of bioleaching. Recent development has shown commercial application of the process and, concurrently, details pertaining to the key microorganisms involved in these processes have been described. Bioleaching of metal sulfides is caused by diverse groups of bacteria. The dissolution biochemistry signifies two types of pathways, which are specifically determined by the acid-solubility of the sulfides, the thiosulfate and polysulfate pathways. This sulfide dissolution can be affected by ‘direct’ and ‘indirect’ mechanisms. In the ‘indirect’ mechanism bacteria oxidize only dissolved iron (II) ions to iron (III) ions and the latter can then attack metal sulfides and then be reduced to iron (II) ions. The ‘direct’ mechanism requires the attachment of bacteria to the sulfide surfaces. In the case of thiobacilli, bacteria secrete exopolymer that facilitates attachment of the bacteria to a metal surface, thus enhancing the leaching rate. In terms of eco-friendliness and process economics, within the field of biohydrometallurgy the technology is considered robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bosecker,Hydrometallurgy 59, 245 (2001).

    Article  CAS  Google Scholar 

  2. W. Verstraete,J. Biotechnol. 94, 93 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. C. Sheela Sasikumar and T. Papinazath,Proc. 3 rd International conference on environment and Health )eds., M. J. Bunch, V. M. Suresh, and T. V. Kumaran), p. 465, Chennai, India (2003).

  4. G. J. Olson, J. A. Brierley, and C. L. Brierley,Appl. Microbiol. Biot. 63, 249 (2003).

    Article  CAS  Google Scholar 

  5. D. B. Johnson,Hydrometallurgy 59, 147 (2001).

    Article  CAS  Google Scholar 

  6. C. L. Brierly,CRC Cr. Rev. Microbiol. 6, 207 (1978).

    Article  Google Scholar 

  7. D. G. Lundgren and E. E. Malouf,Adv. Biotechnol. Processes 1, 223 (1983).

    CAS  Google Scholar 

  8. D. E. Rawlings,Annu. Rev. Microbiol. 56, 65 (2002).

    Article  PubMed  CAS  Google Scholar 

  9. L. Needham and Gwei-Djen,Chemistry and Chemical technology: Part II.5, p. 25, Univ. Press, Cambridge, (1974).

    Google Scholar 

  10. G. Rossi,Biohydrometallurgy, p. 1, McGrawHill, Himburg, Germany (1990).

    Google Scholar 

  11. H. L. Ehrlich,Hydrometallurgy 59, 127 (2001).

    Article  CAS  Google Scholar 

  12. T. Lugaski,Coper-The Red Metal, http://www.unr.edu/sb204/geology/coptext.html (1997).

  13. L. U. Salkield,Geotechnical Engineering, p. 230, Kluwer Academic Publishen, USA (1987).

    Google Scholar 

  14. J. A. Brierley and C. L. Brierley,Hydrometallurgy 59, 233 (2001).

    Article  CAS  Google Scholar 

  15. S. Bustos, S. Castro, and S. Montealegre,FEMS Microbiol. Revs. 1, 231 (1993).

    Article  Google Scholar 

  16. H. A. Schnell,Biomining: Theory, Microbes and Industrial Processes (ed., D. E. Rawlings), p. 21, Springer, New York (1997).

    Google Scholar 

  17. P. C. van Aswegen, M. W. Godfrey, D. M. Miller, and A. K. Haines,Miner. Metall Process. 188 (1991).

  18. H. J. Marais,Innovation in metallurgical plant, p. 125, South African Institute of Mining and Metallurgy, Johannesburg (1990).

    Google Scholar 

  19. R. Poulin and R. W. Lawrence,Minerals Engg. 9, 799 (1996).

    Article  CAS  Google Scholar 

  20. J. A. Brierley,Minerals Engg. 52, 49 (2000).

    Google Scholar 

  21. J. L. Whitlock,Biomining: Theory, Microbes and Industrial Processes (ed., D. Rawlings), p. 17, Springer, New York (1997).

    Google Scholar 

  22. C. Johansson, V. Shrader, J. Sussa, K. Adutwum, and W. Kohr,Biohydrometallurgy and the Environment Towards the Mining of the 21 st century, (eds., R. Amils and A. Ballester) p. 569, Elsevier, Amsterdam (1999).

    Google Scholar 

  23. J. Berthelin,Microbial Geochemistry (ed., W. E. Krumbein), p. 223, Blackwell Scientific, Oxford (1983).

    Google Scholar 

  24. M. P. Silverman and H. L. Ehrlich,Advances in Applied Microbiology, p. 153, Academic Press, New York (1964).

    Google Scholar 

  25. H. L. Ehrlich,J. Bacteriol. 86, 350 (1963).

    PubMed  CAS  Google Scholar 

  26. D. K. Ewart and M. H. Hughes,Adv. Inorg. Chem. 36, 103 (1991).

    Article  CAS  Google Scholar 

  27. T. Gehrke, R. Hellmann, and W. Sand,Biohydrometallurgical Processing, Vol. 1, (eds., T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo), p. 1, Universidad de Chile, Santiago, Chile (1995).

    Google Scholar 

  28. C. Pogliani and E. Donati,J. Ind. Microbiol. Biot. 2, 88 (1999).

    Article  CAS  Google Scholar 

  29. R. Blake, M. M. Lyles, and R. Simmons,Biohydrometallurgical Processing (eds., C. A. Jerez, T. Vargas, H. Toledo, and J. V. Weirtz), p. 13, Universidad de Chile, Santiago, Chile (1995).

    Google Scholar 

  30. P. Devasia, K. A. Natarajan, D. N. Sathyanarayana, and G. Ramananda Rao,Appl. Environ. Microbiol. 59, 4051 (1993).

    PubMed  CAS  Google Scholar 

  31. H. Tributsch,Hydrometallurgy 59, 177 (2001).

    Article  CAS  Google Scholar 

  32. W. Sand, T. Gehreke, P.-G. Jozsa, and A. Schippers,Hydrometallurgy 59, 159 (2001).

    Article  CAS  Google Scholar 

  33. W. Sand, T. Gehrke, R. Hallman, and A. Schippers,Appl. Microbiol. Biot. 43, 961 (1995).

    Article  CAS  Google Scholar 

  34. W. Sand, T. Gehrke, P. Jozsa, and A. Schippers,Biotechnology Comes of Age, p. 366, Australian Mineral Foundation, Glenside, South Australia (1997).

    Google Scholar 

  35. A. Schippers and W. Sand,Appl. Environ. Microbiol. 65, 319 (1999).

    PubMed  CAS  Google Scholar 

  36. G. W. III Luther,Geochim. Cosmochim. Acta 51, 3193 (1987).

    Article  ADS  CAS  Google Scholar 

  37. C. O. Moses, D. K. Nordstrom, J. S. Herman, and A. L. Mills,Geochim Cosmochim Acta 51, 1561 (1987).

    Article  ADS  CAS  Google Scholar 

  38. A. Schippers, P.-G. Jozsa, and W. Sand,Appl. Environ. Microbiol. 62, 3424 (1996).

    PubMed  CAS  Google Scholar 

  39. R. Steudel,Ind. Eng. Chem. Res. 35, 1417 (1996).

    Article  CAS  Google Scholar 

  40. B. Escobar, G. Huerta, and J. Rubio,World J. Microb. Biot. 13, 593 (1997).

    Article  CAS  Google Scholar 

  41. J. Barret, M. N. Hughes, G. I. Karavaiko, and P. A. Spencer,Metal Extraction by Bacterial Oxidation of Minerals, Ellis Horwood, Chichester, UK (1993).

    Google Scholar 

  42. J. F. Blais, R. D. Tyagi, and J. C. Auclair,Wat. Res. 27, 111 (1993).

    Article  CAS  Google Scholar 

  43. D. A. Clark and P. R. Norris,Microbiology 142, 785 (1996).

    Article  CAS  Google Scholar 

  44. S. Nagpal, D. Dahlstrom, and T. Oolman,Biotechnol. Bioeng. 41, 459 (1993).

    Article  PubMed  CAS  Google Scholar 

  45. D. P. Kelly and A. P. Wood,Int. J. Syst. Evol. Micr. 50, 511 (2000).

    Google Scholar 

  46. K. B. Hallberg and E. B. Lindstorm,Microbiology 140, 3451 (1994).

    Article  PubMed  CAS  Google Scholar 

  47. D. B. Johnson,FEMS Microbiol. Ecol. 27, 307 (1998).

    Article  CAS  Google Scholar 

  48. T. Fuchs, H. Huber, K. Teiner, S. Burggraf, and K. O. Stetter,Syst. Appl. Microbiol. 18, 560 (1995).

    Google Scholar 

  49. P. R. Norris, N. P. Burton, and N. A. M. Foulis,Extremophiles 4, 71 (2000).

    Article  PubMed  CAS  Google Scholar 

  50. K. J. Edwards, P. L. Bond, T. M. Gihring, and J. F. Banfield,Science 279, 1796 (2000).

    Article  ADS  Google Scholar 

  51. J. T. Pronk, J. C. de Bruyn, P. Bos, and J. G. Kuenen,Appl. Environ. Micribiol. 58, 2227 (1992).

    CAS  Google Scholar 

  52. A. Das, A. K. Mishra, and P. Roy,FEMS Microbiol. Lett. 97, 167 (1992).

    Article  CAS  Google Scholar 

  53. N. Ohmura, K. Sasaki, N. Matsumoto, and H. Saiki,J. Bacteriol. 184, 2081 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. A. Yarzábal, G. Brasseur, and V. Bonnefoy,FEMS. Microbiol. Lett. 209, 189 (2002).

    Article  PubMed  Google Scholar 

  55. A. Hiraishi, K. V. Nagashima, K. Matsuura, K. Shimada, S. Takaichi, N. Wakao, and Y. Katayama,Int. J. Syst. Bacteriol. 48, 1389 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. A. Hiraishi, Y. Matsuzawa, T. Kanbe, and N. Wakao,Int. J. Syst. Evol. Micr. 50, 1539 (2000).

    CAS  Google Scholar 

  57. J. Pizarro, E. Jedilicki, O. Orellana, J. Romero, and R. T. Espejo,Appl. Environ. Microbiol. 62, 1323 (1996).

    PubMed  CAS  Google Scholar 

  58. R. T. Espejo and J. Romero,Appl. Environ. Microbiol. 63, 1344 (1997).

    PubMed  CAS  Google Scholar 

  59. R. G. McCready and W. D. Gould,Microbial Mineral Recovery (eds., H. L. Ehrlich and C. L. Brieley), p. 107, McGraw Hill, New York (1990).

    Google Scholar 

  60. P. Craven and P. Morales,Copper hydromet roundtable, p. 119, Randol International Ltd., Golden, Colorado (2000).

    Google Scholar 

  61. P. van Staden, M. Rhodes, and T. Martinez,Abstracts of Annual Meeting of the Society for Mining, Metallurgy and Exploration, Cincinnati, Ohio (2003).

  62. K. A. Natarajan,Microbial Mineral Recovery (eds., H. L. Ehrilch and C. L. Brierley), p. 79, Mc-Graw-Hill, New York (1990).

    Google Scholar 

  63. F. Veglio, R. Quaresima, P. Fornari, and S. Ubaldini,Waste Management 23, 245 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Gwan Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, D., Kim, DJ., Ahn, JG. et al. Bioleaching: A microbial process of metal recovery; A review. Met. Mater. Int. 11, 249–256 (2005). https://doi.org/10.1007/BF03027450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03027450

Keywords

Navigation