TM-SNN: Threshold Modulated Spiking Neural Network for Multi-task Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2023)

Abstract

This paper introduces a spiking neural network able to learn multiple tasks using their unique characteristic, namely, that their behavior can be changed based on the modulation of the firing threshold of spiking neurons. We designed and tested a threshold-modulated spiking neural network (TM-SNN) to solve multiple classification tasks using the approach of learning only one task at a time. The task to be performed is determined by a firing threshold: with one threshold the network learns one task, with the second threshold another task, etc. TM-SNN was implemented on Intel’s Loihi2 neuromorphic computer and tested on neuromorphic NMNIST data. The results show that TM-SNN can actually learn different tasks through modifying its dynamics via modulation of the neurons’ firing threshold. It is the first application of spiking neural networks to multi-task classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The lava and lava-dl library are available at https://lava-nc.org.

  2. 2.

    https://github.com/PaoloGCD/MultiTask-SNN.

References

  1. Bilen, H., Vedaldi, A.: Universal representations: the missing link between faces, text, planktons, and cat breeds. CoRR abs/1701.07275 (2017). http://arxiv.org/abs/1701.07275

  2. Cios, K.J., Shin, I.: Image recognition neural network: IRNN. Neurocomputing 7(2), 159–185 (1995). https://doi.org/10.1016/0925-2312(93)E0062-I

    Article  Google Scholar 

  3. Crawshaw, M.: Multi-task learning with deep neural networks: a survey. CoRR abs/2009.09796 (2020). https://arxiv.org/abs/2009.09796

  4. Davies, M., et al.: Advancing neuromorphic computing with Loihi: a survey of results and outlook. Proc. IEEE 109(5), 911–934 (2021). https://doi.org/10.1109/JPROC.2021.3067593

    Article  Google Scholar 

  5. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML 2015, vol. 37, pp. 1180–1189. JMLR.org (2015)

    Google Scholar 

  6. Gerstner, W., Kistler, W.M., Naud, R., Paninski, L.: Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  7. Kaiser, J., Mostafa, H., Neftci, E.: Synaptic plasticity dynamics for deep continuous local learning (DECOLLE). Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.00424

  8. Liu, P., Qiu, X., Huang, X.: Adversarial multi-task learning for text classification. CoRR abs/1704.05742 (2017). http://arxiv.org/abs/1704.05742

  9. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997). https://doi.org/10.1016/S0893-6080(97)00011-7. https://www.sciencedirect.com/science/article/pii/S0893608097000117

  10. Maninis, K., Radosavovic, I., Kokkinos, I.: Attentive single-tasking of multiple tasks. CoRR abs/1904.08918 (2019). http://arxiv.org/abs/1904.08918

  11. Marder, E.: Neuromodulation of neuronal circuits: back to the future. Neuron 76(1), 1–11 (2012). https://doi.org/10.1016/j.neuron.2012.09.010

  12. Orchard, G., et al.: Efficient neuromorphic signal processing with Loihi 2. CoRR abs/2111.03746 (2021). https://arxiv.org/abs/2111.03746

  13. Orchard, G., Jayawant, A., Cohen, G.K., Thakor, N.: Converting static image datasets to spiking neuromorphic datasets using saccades. Front. Neurosci. 9 (2015). https://doi.org/10.3389/fnins.2015.00437

  14. Rebuffi, S., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep neural networks. CoRR abs/1803.10082 (2018). http://arxiv.org/abs/1803.10082

  15. Rosenstein, M.T., Marx, Z., Kaelbling, L.P., Dietterich, T.G.: To transfer or not to transfer. In: NIPS 2005 Workshop on Transfer Learning, vol. 898 (2005)

    Google Scholar 

  16. Ruder, S.: An overview of multi-task learning in deep neural networks (2017). https://doi.org/10.48550/ARXIV.1706.05098. https://arxiv.org/abs/1706.05098

  17. Schröder, F., Biemann, C.: Estimating the influence of auxiliary tasks for multi-task learning of sequence tagging tasks. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2971–2985. Association for Computational Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.acl-main.268. https://aclanthology.org/2020.acl-main.268

  18. Shin, J., et al.: Recognition of partially occluded and rotated images with a network of spiking neurons. IEEE Trans. Neural Netw. 21(11), 1697–1709 (2010). https://doi.org/10.1109/TNN.2010.2050600

    Article  PubMed  Google Scholar 

  19. Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. CoRR abs/1810.08646 (2018). http://arxiv.org/abs/1810.08646

  20. Standley, T., Zamir, A.R., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? (2019). https://doi.org/10.48550/ARXIV.1905.07553. https://arxiv.org/abs/1905.07553

  21. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019). https://doi.org/10.1016/j.neunet.2018.12.002. https://www.sciencedirect.com/science/article/pii/S0893608018303332

  22. Wang, Z., Dai, Z., Póczos, B., Carbonell, J.: Characterizing and avoiding negative transfer (2018). https://doi.org/10.48550/ARXIV.1811.09751. https://arxiv.org/abs/1811.09751

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo G. Cachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cachi, P.G., Soto, S.V., Cios, K.J. (2023). TM-SNN: Threshold Modulated Spiking Neural Network for Multi-task Learning. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2023. Lecture Notes in Computer Science, vol 14135. Springer, Cham. https://doi.org/10.1007/978-3-031-43078-7_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43078-7_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43077-0

  • Online ISBN: 978-3-031-43078-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation