The Concept of Species in Biology and Mineralogy: A Comparative Study

  • Conference paper
  • First Online:
Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems 2022 (BIOCOS 2022)

Abstract

Both descriptive mineralogy and descriptive biology are based upon the concept of species. The definition of species in mineralogy reflects the dialectic unity of chemical composition and crystal structure, two interdependent features of a crystalline substance. Despite some issues that still remain unresolved, the definition of a mineral species is rather strict and depends upon the mutual agreement reached by researchers on the borders that separate one mineral species from another. In biology, there are different approaches to the concept of species. Yet, the biological species is understood as a group of organisms with common morphological, physiological, biochemical and behavioral features, capable of crossbreeding. The modern definition of a biological species is based upon combination of morphological and molecular genetic features. The basic difference between mineral and living organism is the existence of a molecular carrier of genetic information in the latter (DNA). Though mineral kingdom develops in time (mineral evolution), this development has little in common with the development of the domains of life (biological evolution). Thus, the concept of a mineral species has no evolutionary aspect, in contrast to the concept of biological species, where each species is the result of evolution governed by different biological and environmental mechanisms. The morphological and genetic diversity of living organisms is by far larger than the mineralogical diversity, by at least three degrees of magnitude. The biological classification of species, at least at some level of organismal complexity, reflects their evolutionary development, whereas classification of minerals is based purely upon their constitution, i.e., the chemical composition and crystal structure. In both mineralogy and biology, the definition of a new species proceeds along specific protocols governed by special codes identified by respective international scientific organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams M, Raadik TA, Burridge CP, Georges A (2014) Global biodiversity assessment and hyper-cryptic species complexes: More than one species of elephant in the room? Syst Biol 63:518–533

    Article  Google Scholar 

  • Authier A, Chapuis G (2014) A Little Dictionary of Crystallography. Chester International Union of Crystallography

    Google Scholar 

  • Ballhaus C, Helmy HM, Fonseca ROC, Wirth R, Schreiber A, Jöns N (2021) Ultra-reduced phases in ophiolites cannot come from Earth’s mantle. Amer Miner 106:1053–1063

    Article  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Das L (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155

    Article  Google Scholar 

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2009) Natural quasicrystals. Science 324:1306–1309

    Article  Google Scholar 

  • Bindi L, Steinhardt PJ, Yao N, Lu PJ (2011) Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal. Amer Miner 96:928–931

    Article  Google Scholar 

  • Bindi L, Yao N, Lin C, Hollister LS, Andronicos CL, Distler VV et al (2015) Decagonite, Al71Ni24Fe5, a quasicrystal with decagonal symmetry from the Khatyrka CV3 carbonaceous chondrite. Amer Miner 100:2340–2403

    Article  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 …5,1 million species? Amer J Bot 98:426–438

    Article  Google Scholar 

  • Bock WJ (2004) Species: The concept, category and taxon. J Zool Syst Evol Res 42(3):178–190

    Article  Google Scholar 

  • Bokii GB, Gorogotskaya LI (1969) On the crystal chemical classification of sulfates. Zh Strukt Khim 10:624-632 (in Russian)

    Google Scholar 

  • Burns PC (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can Miner 43:1839-1894

    Article  Google Scholar 

  • Burns PC, Miller ML, Ewing RC (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of structures. Can Miner 34:845-880

    Google Scholar 

  • Chapman AD (2009) Numbers of Living Species in Australia and the World, 2nd ed. Canberra Australian Biological Resources Study, pp. 1–80

    Google Scholar 

  • Chesnokov BV, Lotova EV, Pavlyuchenko VS, Nigmatulina EN, Usova LV, Bushmakin AR et al (1989) Svyatoslavite, CaAl2Si2O8 (orthorhombic), a new mineral. Zap Vses Mineral Obshch 118(2):111-114 (in Russian)

    Google Scholar 

  • Chesnokov BV, Lotova EV, Nigmatulina EN, Pavlyuchenko VS, Bushmakin AF (1990) Dmisteinbergite CaAl2Si2O8 (hexagonal) - a new mineral. Zap Vses Mineral Obshch 119:43-5 (in Russian)

    Google Scholar 

  • Christ CL, Clark JR (1977) A crystal-chemical classification of borate structures with emphasis on hydrated borates. Phys Chem Miner 2:59-87

    Article  Google Scholar 

  • Clark A (1993) Hey’s Mineral Index. London Chapman & Hall

    Google Scholar 

  • Crook WW III (1977) Texasite, a new mineral: the first example of a differentiated rare-earth species. Amer Miner 62:1006-1008

    Google Scholar 

  • Croundwell AC (1970) Infraspecific categories in Bryophyta. Biol J Linn Soc 2:221-224

    Article  Google Scholar 

  • Eby RK, Hawthorne FC (1993) Structural relations in copper minerals. I. Structural hierarchy. Acta Crystallogr B49:28-56

    Google Scholar 

  • Fedorov ES (1891) Simmetriia Pravil'nykh Sistem Figur (The symmetry of regular systems of configurations). Zap Min Obshch 28:1-146 (in Russian)

    Google Scholar 

  • Fersman AE (1938) On the number of mineral species. C R (Dokl) Acad Sci URSS 19(4):269–272

    Google Scholar 

  • Fišer C, Robinson CT, Malard F (2018) Cryptic species as a window into the paradigm shift of the species concept. Mol Ecol 27:613–635

    Article  Google Scholar 

  • Gaines RV, Skinner HC, Foord EE, Mason B, Rosenzweig A (1997) Dana’s New Mineralogy. Wiley

    Google Scholar 

  • Geltman DV, Sokolova IV (2013) Botanical nomenclature: specificity and modern tendencies of development. Trudy Zoolog Inst RAN, Suppl 2:230-237 (in Russian)

    Google Scholar 

  • Ghiselin MT (2001) Species Concepts. Encyclopedia of life sciences. DOI:https://doi.org/10.1038/npg.els.0001744

    Article  Google Scholar 

  • Ghiselin MT (2002) Species concepts: the basis for controversy and reconciliation. Fish Fisher 3: 151–160

    Article  Google Scholar 

  • Grant V (1981) Plant Speciation. New York Columbia University Press

    Google Scholar 

  • Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) Nomenclature of the garnet supergroup. Amer Miner 98:785–810

    Article  Google Scholar 

  • Griffin WL, Gain SEM, Adams DT, Huang JX, Saunders M, Toledo V et al (2016) First terrestrial occurrence of tistarite (Ti2O3): Ultra-low oxygen fugacity in the upper mantle beneath Mount Carmel, Israel. Geology 44:815–818

    Article  Google Scholar 

  • Griffin WL, Gain SEM, Bindi L, Toledo V, Cámara F, Saunders M et al (2018a) Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, northern Israel. Minerals 8:601

    Google Scholar 

  • Griffin WL, Huang JX, Thomassot E, Gain SEM, Toledo V, O’Reilly SY (2018b) Super-reducing conditions in ancient and modern volcanic systems: sources and behaviour of carbon-rich fluids in the lithospheric mantle. Mineral Petrol 112:101–114

    Google Scholar 

  • Griffin WL, Gain SEM, Huang JX, Saunders M, Shaw J, Toledo V et al (2019) A terrestrial magmatic hibonite-grossite-vanadium assemblage: Desilication and extreme reduction in a volcanic plumbing system, Mount Carmel, Israel. Amer Miner 104:207–219

    Article  Google Scholar 

  • Grigoriev DP (1961) Ontogeny of Minerals. Lvov, Izd Lvov Univ

    Google Scholar 

  • Grimm U (2015) Aperiodic crystals and beyond. Acta Crystallogr 71:258-274

    Google Scholar 

  • Guinier A, Bokij GB, Boll‐Dornberger K, Cowley JM, Durovič S, Cox DE et al (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Acta Crystallogr A40:399–404

    Article  Google Scholar 

  • Hawthorne FC (1986) Structural hierarchy in IVMxIIITyz minerals. Can Miner 24:625-642

    Google Scholar 

  • Hawthorne FC (1990) Structural hierarchy in M[6]T[4]fn minerals. Z Kristallogr 192:1-52

    Article  Google Scholar 

  • Hawthorne FC (1998) Structure and chemistry of phosphate minerals. Miner Mag 62:141-164

    Article  Google Scholar 

  • Hawthorne FC (2023). On the definition of distinct mineral species: A critique of current IMA-CNMNC procedures. Miner Mag, in press. doi:https://doi.org/10.1180/mgm.2023.8

    Article  Google Scholar 

  • Hawthorne FC, Huminicki DMC (2002) The crystal chemistry of beryllium. Rev Miner Geochem 50:333-403

    Article  Google Scholar 

  • Hawthorne FC, Burns PC, Grice JD (1996) The crystal chemistry of boron. Rev Miner 33:41-115

    Google Scholar 

  • Hawthorne FC, Krivovichev SV, Burns PC (2000) Crystal chemistry of sulfate minerals. Rev Miner Geochem 40:1-112

    Article  Google Scholar 

  • Hawthorne FC, Mills SJ, Hatert F, Rumsey MS (2021) Ontology, archetypes and the definition of ‘mineral species’. Miner Mag 85:125-131

    Article  Google Scholar 

  • Hazen RM (2013) Paleomineralogy of the Hadean Eon: A preliminary listAmer J Sci. 313:807-843

    Article  Google Scholar 

  • Hazen RM (2019) An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering. Amer Miner 104:810–816

    Article  Google Scholar 

  • Hazen RM, Morison SM (2020) An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga). Amer Miner 105:627–651

    Article  Google Scholar 

  • Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry J, McCoy T et al. (2008) Mineral evolution. Amer Mineral 93:1693-720

    Article  Google Scholar 

  • Hazen RM, Hystad G, Downs RT, Golden J, Pires A, Grew ES (2015a) Earth’s “missing” minerals. Amer Miner 100:2344–2347

    Google Scholar 

  • Hazen RM, Grew ES, Downs RT, Golden J, Hystad G (2015b) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Can Miner 53(2):295–324

    Google Scholar 

  • Hazen RM, Morrison SM, Prabhu A (2021) An evolutionary system of mineralogy. Part III: Primary chondrule mineralogy (4566 to 4561 Ma). Amer Miner 106:325–350

    Article  Google Scholar 

  • Hazen RM, Morrison SM, Krivovichev SV, Downs RT (2022) Lum** and Splitting: Toward a Classification of Mineral Natural Kinds. Amer Miner 107:1288-1301

    Article  Google Scholar 

  • Heinrichs J, Klugmann F, Hentschel J, Schneider H (2009) DNA taxonomy, cryptic speciation and diversification of the Neotropical-African liverwort, Marchesinia brachiate (Lejeuneaceae, Porellales). Mol Phylogen Evol 53:113–121

    Article  Google Scholar 

  • Heinrichs J, Hentschel J, Bombosch A, Fiebig A, Reise J, Edelmann M, Kreier HP, Schäfer-Verwimp A, Caspari S, Schmidt AR, Zhu RL, von Konrat M, Shaw B, Shaw AJ (2010) One species or at least eight? Delimitation and distribution of Frullania tamarisci (L.) Dumort. s.l. (Jungermanniopsida, Porellales) inferred from nuclear and chloroplast DNA markers. Mol Phylogen Evol 56:1105–1114

    Article  Google Scholar 

  • Hey J (2006) On the failure of modern species concepts. Trends Ecol Evol 21:447–450

    Article  Google Scholar 

  • Hey J, Waples RS, Arnold ML, Butlin RK, Harrison RG (2003) Understanding and confronting species uncertainty in biology and conservation. Trends Ecol Evol 18:597–603

    Article  Google Scholar 

  • Hystad G, Downs RT, Hazen RM (2015a) Mineral frequency distribution data conform to a LNRE model: Prediction of Earth’s “missing” minerals. Math Geosci 47:647-461

    Google Scholar 

  • Hystad G, Downs RT, Grew ES, Hazen RM (2015b) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci Lett 426:154-157

    Google Scholar 

  • Hystad G, Eleish A, Downs RT, Morrison SM, Hazen RM (2019a) Bayesian estimation of Earth’s undiscovered mineralogical diversity using noninformative priors. Math Geosci 51:401-417

    Google Scholar 

  • Hystad G, Morrison SM, Hazen RM (2019b) Statistical analysis of mineral evolution and mineral ecology: the current state and a vision for the future. Appl Comput Geosci 1:100005

    Google Scholar 

  • International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol 69:S1–S111

    Google Scholar 

  • Ivanova MA, Lorenz CA, Borisovskiy SE, Burmistrov AA, Korost DV, Korochantsev AV et al (2017) Composition and origin of holotype Al-Cu-Zn minerals in relation to quasicrystals in the Khatyrka meteorite. Meteor Planet Sci 52:869–883

    Article  Google Scholar 

  • Johnsen O, Ferraris G, Gault RA, Grice JD, Kampf AR, Pekov IV (2003) The nomenclature of eudialyte-group minerals. Can Miner 41:785–794

    Article  Google Scholar 

  • Khomyakov AP (1996) Why is there more than two thousand? Priroda 5:62-74 (in Russian)

    Google Scholar 

  • Komarov VL (1940) The doctrine of the species in plants. Publishing House of the Academy of Sciences of the USSR (in Russian)

    Google Scholar 

  • Krivovichev SV (2023) Structural and chemical complexity of minerals: the information-based approach. In: Bindi L, Cruciani G, eds. Celebrating the International Year of Mineralogy. Springer, in press

    Google Scholar 

  • Lian D, Yang J, DIlek Y, Wu W, Zhang Z, **ong F et al (2017) Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. Amer Miner 102:1101–1113

    Google Scholar 

  • Lima-de-Faria J (1994) Structural Mineralogy. An Introduction. Dordrecht Kluwer

    Google Scholar 

  • Lima-de-Faria J (2001) Structural Classification of Minerals. Vol. 1. Minerals with A, AmBn and ApBqCr General Chemical Formulas. Dordrecht Kluwer

    Google Scholar 

  • Lima-de-Faria J (2003) Structural Classification of Minerals. Vol. 2. Minerals with ApBqCrDs to ApBqCrDsExF General Chemical Formulas. Dordrecht Kluwer

    Google Scholar 

  • Lima-de-Faria J (2004) Structural Classification of Minerals. Vol. 3. Minerals with ApBq...ExFy...nAq General Chemical Formulas. Dordrecht Kluwer

    Google Scholar 

  • Lima-de-Faria J (2012) The close packing in the classification of minerals. Eur J Miner 24:163-169

    Article  Google Scholar 

  • Litasov KD, Kagi H, Bekker TB (2019a) Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos 340–341:181–190

    Article  Google Scholar 

  • Litasov KD, Bekker TB, Kagi H (2019b) Reply to the discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, v.340–341, p.181–190) by W.L. Griffin, V. Toledo and S.Y. O’Reilly. Lithos 348–349:105170

    Google Scholar 

  • Knapp S, McNeill J, Turland NJ (2011) Changes to publication requirements made at the XVIII International Botanical Congress in Melbourne – what does e-publication mean for you? PhytoKeys 6:5–11

    Article  Google Scholar 

  • Mahner M (1993) What is a species? J Gen Philos Sci 24:103–126

    Article  Google Scholar 

  • Mahner M, Bunge M (1997) Foundations of Biophilosophy. Springer Verlag Frankfurt

    Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem, in Species. The Units of Biodiversity (eds Claridge MF, Dawah AH and Wilson MR), London Chapman & Hall, pp. 381–424

    Google Scholar 

  • Mayr E (1963) Animal Species and Evolution. Cambridge Harvard University Press

    Google Scholar 

  • Mayr E (1969) Principles of systematic zoology. N. Y. McGraw-Hill

    Google Scholar 

  • Mayr E (2000) The biological species concept., in Species concepts and phylogenetic theory: a debate (Wheeler QD, Meier R, eds), Columbia Univ Press, New York, pp 17–29

    Google Scholar 

  • Mills SJ, Hatert F, Nickel EH, Ferraris G (2009) The standardisation of mineral group hierarchies: Application to recent nomenclature proposals. Eur J Miner 21:1073–1080

    Article  Google Scholar 

  • Moore PB (1974) Structural hierarchies among minerals containing octahedrally coordinating oxygen. II. Systematic retrieval and classification of edge-sharing clusters: an epistemological approach. N Jb Miner Abh 120:205-227

    Google Scholar 

  • Moral C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How Many Species Are There on Earth and in the Ocean? PLoS Biol 9:e100112

    Google Scholar 

  • Morrison SM, Hazen RM (2020) An evolutionary system of mineralogy. Part II: Interstellar and solar nebula primary condensation mineralogy (>4.565 Ga). Amer Miner 105:1508–1535

    Google Scholar 

  • Morrison SM, Hazen RM (2021) An evolutionary system of mineralogy. Part IV: Planetesimal differentiation and impact mineralization (4566 to 4560 Ma). Amer Miner 106:730–761

    Article  Google Scholar 

  • Nickel EH, Grice JD (1998) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Can Miner 36:913–926

    Google Scholar 

  • Nickel EH, Grice JD (1999) The IMA Commission on New Minerals and Mineral Names: Procedures and guidelines on mineral nomenclature. Mineral Petrol 64:237–263

    Article  Google Scholar 

  • Pace NR (2006) Time for a change. Nature 441:289

    Article  Google Scholar 

  • Parafiniuk J, Hatert F (2020) New IMA CNMNC guidelines on combustion products from burning coal dumps. Eur J Miner 32:215–217

    Article  Google Scholar 

  • Pasero M (2023) The New IMA List of Minerals. http://pubsites.uws.edu.au/ima-cnmnc/

  • Pasero M, Kampf AR, Ferraris C, Pekov IV, Rakovan J, White TJ (2010) Nomenclature of the apatite supergroup minerals. Eur J Miner 22:163–179

    Article  Google Scholar 

  • Pavlinov IY (2018) Foundations of Biological Systematics. History and Theory. Moscow KMK

    Google Scholar 

  • Peacor DR, Simmons WB, Jr, Essene EJ, Heinrich EW (1982) New data on discreditation of “texasite”, “albrittonite”, “cuproartinite”, “cuprohydromagnesite”, and “yttromicrolite”, with corrected data on nickelbischofite, rowlandite, and yttrocrasite. Amer Miner 67:156-169

    Google Scholar 

  • Povarennykh AS (1966) On the abundance of the chemical elements in the Earth’s crust and on the quantity of mineral species. Mineral Sb 20(2):178-185 (in Russian)

    Google Scholar 

  • Povarennykh AS (1972) Crystal Chemical Classification of Minerals. New York London Plenum Press

    Google Scholar 

  • Pushcharovsky DYu, Lima-de-Faria J, Rastsvetaeva RK (1998) Main structural subdivisions and structural formulas of sulphate minerals. Z. Kristallogr 213:141-150

    Google Scholar 

  • Rastsvetaeva RK, Pushcharovsky DY (1989) Crystal chemistry of sulfates. Itogi Nauki Tekhn ser Kristallokhim. Vol. 23 (in Russian)

    Google Scholar 

  • Raup DM (1986) Biological extinction in earth history. Science 231:1528–1533

    Article  Google Scholar 

  • Renner MAM (2020) Opportunities and challenges presented by cryptic bryophyte species. Telopea J Plant Syst 23:41-60

    Article  Google Scholar 

  • Rietz GE (1930) The fundamental units of biological taxonomy. Sven Bot Tidskr 24:333-428

    Google Scholar 

  • Ryberg M (2015) Molecular operational taxonomic units as approximations of species in the light of evolutionary models and empirical data from Fungi. Mol Ecol 24:5770–5777

    Article  Google Scholar 

  • Sabelli C, Trosti-Ferroni R (1985) A structural classification of sulfate minerals. Per Miner 54:1-46

    Google Scholar 

  • Schoenflies A (1891) Kristallsysteme und Kristallstruktur. Leipzig (in German)

    Google Scholar 

  • Strunz H (1996) Chemical-structural mineral classification. Principles and summary of system. N Jb Mineral Mh 10:435-445

    Google Scholar 

  • Strunz H, Nickel EH (2001) Strunz Mineralogical Tables. Stuttgart Schweizerbart

    Google Scholar 

  • Touw A (1979) Notes on the use of infraspecific categories by bryologist. In: Bryophyte Taxonomy: Proc IAB Taxon Workshop Meet Geneva, pp. 13–20

    Google Scholar 

  • Urusov VS (1983) Why is there only two thousand? Priroda 10:82-88 (in Russian)

    Google Scholar 

  • Vavilov NI (1931) The Linnean species as a system. Leningrad Izd Selskhozgiz (in Russian)

    Google Scholar 

  • Vernadsky V (1939) Problemy biogeokhimii. II. O korennom materialno-energeticheskom otlichii zhivykh I kosnykh estestvennykh tel biosphery (Problems of biogeochemistry. II. On the basic material and energetical difference between living and non-living natural bodies of the biosphere). Leningrad Izdatelstvo AN SSSR (in Russian)

    Google Scholar 

  • Vilnet AA, Borovichev EA, Bakalin VA (2014) Frullania subarctica — a new species of the Frullania tamarisci complex (Frullaniaceae, Marchantiophyta). Phytotaxa 173:61–72

    Article  Google Scholar 

  • Wilkins JS (2007) The dimensions, modes and definitions of species and speciation. Biol Phil 22:247–266

    Article  Google Scholar 

  • Wilson EO (1985) The biological diversity crisis: A challenge to science. Iss Sci Technol 2:20–29

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a Natural System of Organisms: Proposal for the Domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Article  Google Scholar 

  • **ong Q, Griffin WL, Huang JX, Gain SEM, Toledo V, Pearson NJ et al (2017) Super-reduced mineral assemblages in “ophiolitic” chromitites and peridotites: The view from Mount Carmel. Eur J Miner 29:557–570

    Article  Google Scholar 

  • Yushkin NP (1982) Evolutionary ideas in modern mineralogy. Zap Vses Miner Obshch 116(4):432-442 (in Russian)

    Google Scholar 

  • Zavadsky KM (1968) Species and Speciation. Leningrad Nauka (in Russian)

    Google Scholar 

  • Zavarzin GA (2006) Does evolution make the essence of biology? Her Russ Acad Sci 76:292–302

    Article  Google Scholar 

  • Zhabin AG (1981) Is there evolution of mineral species on Earth? Dokl Earth Sci 247:142-144

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research, grant 21-011-44141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Krivovichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krivovichev, S.V., Borovichev, E.A. (2023). The Concept of Species in Biology and Mineralogy: A Comparative Study. In: Frank-Kamenetskaya, O.V., Vlasov, D.Y., Panova, E.G., Alekseeva, T.V. (eds) Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems 2022. BIOCOS 2022. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-40470-2_39

Download citation

Publish with us

Policies and ethics

Navigation