Federated Learning Under Statistical Heterogeneity on Riemannian Manifolds

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

Federated learning (FL) is a collaborative machine learning paradigm in which clients with limited data collaborate to train a single “best” global model based on consensus. One major challenge facing FL is the statistical heterogeneity among the data for each of the local clients. Clients trained with non-IID or imbalanced data whose models are aggregated using averaging schemes such as FedAvg may result in a biased global model with a slow training convergence. To address this challenge, we propose a novel and robust aggregation scheme, FedMan, which assigns each client a weighting factor based on its statistical consistency with other clients. Such statistical consistency is measured on a Riemannian manifold spanned by the covariance of the local client output logits. We demonstrate the superior performance of FedMAN over several FL baselines (FedAvg, FedProx, and Fedcurv) as applied to various benchmark datasets (MNIST, Fashion-MNIST, and CIFAR-10) under a wide variety of degrees of statistical heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  Google Scholar 

  2. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statistics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA -2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27816-0_8

    Chapter  Google Scholar 

  3. Förstner, W., Moonen, B.: A metric for covariance matrices (2003)

    Google Scholar 

  4. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. In: Annales de l’institut Henri Poincaré, vol. 10, pp. 215–310 (1948)

    Google Scholar 

  5. Goodfellow, I.J., Pouget-Abadie, J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  6. Hsu, T., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. Ar**v abs/1909.06335 (2019)

    Google Scholar 

  7. Kairouz, P., McMahan, H.B., Avent, B., et. al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1–210 (2021)

    Google Scholar 

  8. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)

    Article  MathSciNet  Google Scholar 

  9. Karimireddy, S.P., Kale, S., Mohri, M., et al.: SCAFFOLD: Stochastic controlled averaging for federated learning. In: ICML, pp. 5132–5143 (13–18 Jul 2020)

    Google Scholar 

  10. Li, T., Sahu, A.K., et al.: FedDANE: a federated newton-type method. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1227–1231 (2019)

    Google Scholar 

  11. Li, T., Sahu, A.K., et al.: Federated optimization in heterogeneous networks. In: Dhillon, I., Papailiopoulos, D., Sze, V. (eds.) Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)

    Google Scholar 

  12. McMahan, H.B., Moore, E., et al.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  13. Miolane, N., Guigui, N., et. al.: Geomstats: a python package for Riemannian geometry in machine learning. J. Mach. Learn. Res. 21(223), 1–9 (2020). http://jmlr.org/papers/v21/19-027.html

  14. Mitra, A., Jaafar, R.H., Pappas, G.J., Hassani, H.: Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients. In: Neural Information Processing Systems (2021)

    Google Scholar 

  15. Pennec, X.: Probabilities and statistics on Riemannian manifolds: basic tools for geometric measurements. In: Proceedings of Nonlinear Signal and Image Processing (NSIP1999), vol. 1, pp. 194–198 (1999)

    Google Scholar 

  16. Shoham, N., et al.: Overcoming forgetting in federated learning on non-IID data. In: FL-NeurIPS (2019). ar**v:1910.07796

  17. Wang, J., Liu, Q., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst. 33, 7611–7623 (2020)

    Google Scholar 

  18. Zhao, Y., Li, M., Lai, L., et al.: Federated learning with non-IID data. Ar**v abs/1806.00582 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, A., Luo, W., Robles-Kelly, A. (2023). Federated Learning Under Statistical Heterogeneity on Riemannian Manifolds. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation