A Hessian-Based Federated Learning Approach to Tackle Statistical Heterogeneity

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2023)

Abstract

Federated learning (FL) involves collaboration between clients with limited data to produce a single optimal global model through consensus. One of the difficulties with FL is the differences in data statistics between local clients. Clients with statistically heterogeneous data deviate from the global target, resulting in a slower convergence rate and increased communication resource consumption. To address this problem, we propose a new approach, FedH, that maintains the proximity of local models to the global target while maximizing communication efficiency and computational resources. We use the Hessian matrix to constrain client updates that deviate from the global target. Our results demonstrate the superiority of FedH over FL baselines such as FedAvg, FedProx, and Fedcurv when applied to benchmark datasets such as MNIST, Fashion-MNIST, and CIFAR-10 across a range of statistical heterogeneity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McMahan, H.B., Moore, E., et al.: Communication-efficient learning of deep networks from decentralized data. In: AISTATS (2017)

    Google Scholar 

  2. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., et al.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14, 1–210 (2019)

    Article  Google Scholar 

  3. Karimireddy, S., Kale, S., Mohri, M., et al.: SCAFFOLD: stochastic controlled averaging for federated learning. In: ICML, 13–18 Jul 2020, pp. 5132–5143 (2020)

    Google Scholar 

  4. Li, T., Sahu, A.K., et al.: Federated optimization in heterogeneous networks. In: Dhillon, I., Papailiopoulos, D., Sze, V. (eds.) Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)

    Google Scholar 

  5. Shoham, N., et al.: Overcoming forgetting in federated learning on non-IID data. In: FL-NeurIPS (2019). ar**v:1910.07796

  6. Pennington, J., Bahri, Y.: Geometry of neural network loss surfaces via random matrix theory. In: ICML (2017)

    Google Scholar 

  7. Pennington, J., Worah, P.: The spectrum of the fisher information matrix of a single-hidden-layer neural network. In: Conference on Neural Information Processing Systems (2018)

    Google Scholar 

  8. Hsu, T., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. ar**v:abs/1909.06335 (2019)

  9. Zhao, Y., Li, M., Lai, L., et al.: Federated learning with non-IID data. ar**v:abs/1806.00582 (2018)

  10. Guha, N., Talwalkar, A., Smith, V.: One-shot federated learning. CoRR, abs/1902.11175 (2019)

    Google Scholar 

  11. Lin, T., Kong, L., Stich, S.U., Jaggi, M.: Ensemble distillation for robust model fusion in federated learning. Adv. Neural. Inf. Process. Syst. 33, 2351–2363 (2020)

    Google Scholar 

  12. Chen, H.-Y., Chao, W.-L.: FedBE: making Bayesian model ensemble applicable to federated learning. In: ICLR (2021)

    Google Scholar 

  13. Maddox, W., Garipov, T., Izmailov, P., et al.: A simple baseline for Bayesian uncertainty in deep learning. In: NeurIPS (2019)

    Google Scholar 

  14. Li, T., Sahu, A.K., Zaheer, M., et al.: Feddane: a federated newton-type method. In: 2019 53rd Asilomar Conference on Signals, Systems, and Computers, pp. 1227–1231 (2019)

    Google Scholar 

  15. Islamov, R., Qian, X., Richtárik, P.: Distributed second order methods with fast rates and compressed communication. In: ICML (2021)

    Google Scholar 

  16. Safaryan, M., Islamov, R., et al.: FedNL: making newton-type methods applicable to federated learning. In: ICML, ser. Workshop on Federated Learning for User Privacy and Data Confidentiality (2021)

    Google Scholar 

  17. Qian, X., et al.: Basis matters: better communication-efficient second order methods for federated learning. In: AISTATS (2022)

    Google Scholar 

  18. Liu, Y., Zhu, Y., James, J.: Resource-constrained federated learning with heterogeneous data: formulation and analysis. IEEE Trans. Network Sci. Eng. (2021)

    Google Scholar 

  19. Liu, D.C., Nocedal, J.: On the limited memory BFGs method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450 (2020)

    Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/0-387-22742-3

    Book  MATH  Google Scholar 

  22. LeCun,Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Neural Networks: Tricks of the Trade (2012)

    Google Scholar 

  23. Becker, S., LeCun, Y.: Improving the convergence of back-propagation learning with second-order methods. In: Technical Report CRG-TR-88-5 (1989)

    Google Scholar 

  24. Schraudolph, N.N.: Fast curvature matrix-vector products. In: ICANN (2001)

    Google Scholar 

  25. Chen, P.: Hessian matrix vs. gauss-newton hessian matrix. SIAM J. Numer. Anal. 49, 1417–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  27. Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimization using an approximate newton-type method. In: International Conference on Machine Learning. PMLR 2014, pp. 1000–1008 (2014)

    Google Scholar 

  28. Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms. Part I: criteria and sufficient conditions for scaling a class of algorithms. Manage. Sci. 20(5), 845–862 (1974)

    Article  MATH  Google Scholar 

  29. Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

    Article  Google Scholar 

  30. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: Emnist: extending mnist to handwritten letters. In: International Joint Conference on Neural Networks (IJCNN). IEEE 2017, pp. 2921–2926 (2017)

    Google Scholar 

  31. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on cifar-10. Unpublished manuscript, 40(7), 1–9 (2010)

    Google Scholar 

  32. Li, X., Huang, K., et al.: On the convergence of fedavg on non-IID data. In: ICLR (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, A., Luo, W., Robles-Kelly, A. (2023). A Hessian-Based Federated Learning Approach to Tackle Statistical Heterogeneity. In: Yang, X., et al. Advanced Data Mining and Applications. ADMA 2023. Lecture Notes in Computer Science(), vol 14177. Springer, Cham. https://doi.org/10.1007/978-3-031-46664-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46664-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46663-2

  • Online ISBN: 978-3-031-46664-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation