Organic Materials

  • Chapter
  • First Online:
Electrochemistry for Cultural Heritage

Abstarct

The cultural heritage has an enormous variety of organic materials (paper, leather, furniture, textiles, pigments, bindings, varnishes, …). This chapter presents the results currently attained in analyzing several of these materials. The essential aspects of the so-called vegetal electrochemistry are discussed concerning its application for studying wooden objects, paper, and charcoal. The electrochemical analysis of tar pitch involves the detection of polymerization processes of sulfur-based compounds. Tentative procedures for dating wood using the lignin/vanillin proportion and charcoal exploiting electrocatalytic processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doménech-Carbó A (2021) Electrochemistry of plants: basic theoretical research and applications in plant science. J Solid State Electrochem 25:2747–2757

    Article  Google Scholar 

  2. Doménech-Carbó A, Doménech-Carbó MT, Ferragud-Adam X, Ortiz-Miranda AS, Montoya N, Pasíes-Oviedo T, Peiró-Ronda MA, Vives-Ferrándiz J, Carrión Y (2017) Identification of vegetal species in wooden objects using in situ microextraction-assisted voltammetry of microparticles. Anal Methods 9:2041–2048

    Article  Google Scholar 

  3. Doménech-Carbó A, Da Silveira GD, Medina-Alcaide MA, Martinez-Carmona A, López-Serrano D, Pasíes-Oviedo T, Algarra-Pardo VM, De Carvalho LM, Montoya N (2018) Polythiophenes as markers of asphalt and archaeological tar pitch aging. Characterization using solid state electrochemistry. Electrochem Commun 87:18–21

    Google Scholar 

  4. Di Turo F, Mai C, Haba A, Doménech-Carbó A (2019) Discrimination of papers used in C&R by the means of the voltammetry of immobilized microparticles technique. Anal Methods 11:4431–4439

    Article  Google Scholar 

  5. Doménech-Carbó A, Ibars AM, Prieto-Mossi J, Estrelles E, Scholz F, Cebrián-Torrejón G, Martini M (2015) Electrochemistry-based chemotaxonomy in plants using the voltammetry of microparticles methodology. New J Chem 39:7421–7428

    Article  Google Scholar 

  6. Doménech-Carbó A, Ibars AM, Prieto-Mossi J, Estrelles E, Doménech-Carbó MT, Ortiz-Miranda AS, Lee Y (2017) Access to phylogeny from voltammetric fingerprints of seeds: the Asparagus case. Electroanalysis 29:643–650

    Article  Google Scholar 

  7. Milczarek G (2009) Preparation, characterization and electrocatalytic properties of an iodine|lignin-modified gold electrode. Electrochim Acta 54:3199–3205

    Article  CAS  Google Scholar 

  8. Deepa AK, Dhepe PL (2014) Solid acid catalyzed depolymerization of lignin into value added aromatic monomers. RSC Adv 4:12625–12629

    Article  CAS  Google Scholar 

  9. Cottyn B, Rivard M, Majira A, Beauhaire J, Allais F, Martens T, Baumberger S, Ducrot PH (2015) Comparative electrochemical study on monolignols and Horticulture relevant for the comprehension of the lignification. Phytochem Lett 13:280–285

    Article  CAS  Google Scholar 

  10. Admassie S, Nilsson TY, Inganäs O (2014) Charge storage properties of biopolymer electrodes with (sub)tropical lignins. Phys Chem Chem Phys 16:24681–24684

    Article  CAS  PubMed  Google Scholar 

  11. Kilmartin PA, Hsu CF (2003) Characterisation of polyphenols in green, oolong, and black teas, and in coffee, using cyclic voltammetry. Food Chem 82:501–512

    Article  CAS  Google Scholar 

  12. Timbola AK, de Souza CD, Giacomelli C, Spinelli A (2006) Electrochemical oxidation of quercetin in hydro-alcoholic solution. J Braz Chem Soc 17:139–148

    Article  CAS  Google Scholar 

  13. Ramesova S, Sokolova R, Tarabek J, Degano I (2013) The oxidation of luteolin, the natural flavonoid dye. Electrochim Acta 110:646–654

    Article  CAS  Google Scholar 

  14. Komorsky-Lovric S, Novak I (2013) Abrasive strip** voltammetry of myricetin and dihydromyricetin. Electrochim Acta 98:153–156

    Article  CAS  Google Scholar 

  15. Doménech-Carbó A, Gavara R, Hernández P, Domínguez I (2015) Contact probe voltammetry for in situ monitoring of the reactivity of phenolic tomato (Solanum lycopersicum L.) compounds with ROS. Talanta 144:1207–1215

    Article  PubMed  Google Scholar 

  16. Doménech-Carbó A, Cervelló P, González JM, Soriano P, Estrelles E, Montoya N (2019) Electrochemical monitoring of ROS influence on seedlings and germination response to salinity stress of three species of the tribe Inuleae. RSC Adv 9:17856–17867

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marsellis B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis C (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83

    Article  Google Scholar 

  18. Enache TA, Chiorcea-Paquim AM, Fatibello-Filho O, Oliveira-Brett AM (2009) Hydroxyl radicals electrochemically generated in situ on a boron doped diamond electrode. Electrochem Commun 11:1342–1345

    Article  CAS  Google Scholar 

  19. Kapałka A, Foti G, Comninellis C (2009) The importance of electrode material in environmental electrochemistry: formation and reactivity of free hydroxyl radicals on boron-doped diamond electrodes. Electrochim Acta 54:2018–2023

    Article  Google Scholar 

  20. Xu J, Huang W, McCreery RL (1996) Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. J Electroanal Chem 410:235–242

    Article  Google Scholar 

  21. Krishnamachari V, Levine LH, Paré PW (2002) Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging. J Agric Food Chem 50:4357–4363

    Article  CAS  PubMed  Google Scholar 

  22. Schweingruber FH (1990) Anatomy of European woods. Hupt, Stuttgart

    Google Scholar 

  23. Nigra BT, Faull KF, Barnard H (2015) Analytical chemistry in archaeological research. Anal Chem 87:3–18

    Article  CAS  PubMed  Google Scholar 

  24. Vernet J-L, Ogereau P, Figueiral I, Yanes CM, Uzquiano P (2001) Guide d’identification des charbons de bois préhistoriques du sud-ouest de l’Europe. CNRS, Paris

    Google Scholar 

  25. Carrión Y, Rosser P (2010) Revealing Iberian woodcraft: conserved wooden artefacts from south-east Spain. Antiquity 84:747–764

    Article  Google Scholar 

  26. Martini M, de Carvalho LM, Blasco-Blasco A, Doménech-Carbó A (2015) Screening and authentication of herbal formulations based on microextraction-assisted voltammetry of microparticles. Anal Methods 7:5740–5747

    Article  CAS  Google Scholar 

  27. Madariaga JM (2015) Analytical chemistry in the field of cultural heritage. Anal Methods 7:4848–4876

    Article  Google Scholar 

  28. Chiriu D, Ricci PC, Cappellini G, Carbonaro CM (2018) Ancient and modern paper: study on ageing and degradation process by means of portable NIR μ-Raman spectroscopy. Microchem J 138:26–34

    Article  CAS  Google Scholar 

  29. Bronzato M, Calvini P, Federici C, Dupont A-L, Meneghetti M, Di Marco V, Biondi B, Zoleo A (2015) Degradation by-products of ancient paper leaves from wash wàters. Anal Methods 7:8197–8205

    Article  CAS  Google Scholar 

  30. Poggi G, Giorgi R, Mirabile A, **ng H, Baglioni P (2017) A stabilizer-free non-polar dispersion for the deacidification of contemporary art on paper. J Cult Herit 26:44–52

    Article  Google Scholar 

  31. Casoli A, Isca C, De Iasio S, Botti L, Iannuccelli S, Residori L, Ruggiero D, Sotgiu S (2014) Analytical evaluation, by GC/MS, of gelatine removal from ancient papers induced by wet cleaning: a comparison between immersion treatment and application of rigid Gellan gum gel. Microchem J 117:61–67

    Article  CAS  Google Scholar 

  32. Pottier F, Kwimang S, Michelin A, Andraud C, Goubard F, Lavédrine B (2017) Independent macroscopic chemical map**s of cultural heritage materials with reflectance imaging spectroscopy: case study of a 16th century Aztec manuscript. Anal Methods 9:5997–6008

    Article  Google Scholar 

  33. Campanella MPSL, Casoli A, Colombini MP, Bettolo RM, Matteini M, Migneco LM, Montenero A, Nodari L, Piccioli C, Zappalà MP, Portalone G, Russo U (2007) Chimica per l’arte. Zanichelli, Milan

    Google Scholar 

  34. Yum H (2011) History and function of dispersion aids used in traditional East Asian papermaking. J Am Inst Conserv 34:202–208

    Article  Google Scholar 

  35. Labbé N, Harper D, Rials TJ (2006) Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. J Agric Food Chem 54:3492–3497

    Article  PubMed  Google Scholar 

  36. Ascough PL, Bird MI, Scott AC, Collinson ME, Cohen-Ofri I, Snape CE, Le Manquais K (2010) Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J Archaeol Sci 37:1590–1599

    Article  Google Scholar 

  37. Gosling WD, Cornelissen HL, McMichael CNH (2019) Reconstructing past fire temperatures from ancient charcoal material. Palaeogeogr Palaeoclimatol Palaeoecol 520:128–137

    Article  Google Scholar 

  38. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wild Fire 18:116–126

    Article  Google Scholar 

  39. Pyle LA, Hockaday WC, Boutton T, Zygourakis K, Kinney TJ, Masiello CA (2015) Chemical and isotopic thresholds in charring: implications for the interpretation of charcoal mass and isotopic data. Environ Sci Technol 49:14057–14064

    Article  CAS  PubMed  Google Scholar 

  40. Doménech-Carbó A, Carrión Y, Olivares-Altalaguerri S, Ramírez-Rodríguez M. Unpublished results

    Google Scholar 

  41. Grünberg JM (2002) Middle Palaeolithic birch-bark pitch. Antiquity 76:15–16

    Article  Google Scholar 

  42. Mazza PPA, Martini F, Sala B, Magi M, Colombini MP, Giachi G, Landucci F, Lemorini C, Modugno F, Ribechini E (2006) A new Palaeolithic discovery: Tar-hafted stone tools in a European Mid-Pleistocene bone-bearing bed. J Archaeol Sci 33:1310–1318

    Article  Google Scholar 

  43. Pollard AM, Heron C (2008) Archaeological chemistry, 2nd edn. RSC Publishing, Cambridge

    Book  Google Scholar 

  44. Andersson JT, Hegazi AH, Roberz B (2006) Polycyclic aromatic sulfur heterocycles as information carriers in environmental studies. Anal Bioanal Chem 386:891–905

    Article  CAS  PubMed  Google Scholar 

  45. Green JB, Yu SKT, Pearson CD, Reynolds JW (1993) Analysis of sulfur compound types in asphalt. Energy Fuels 7:119–126

    Article  CAS  Google Scholar 

  46. de Carvalho LM, Nascimento PC, Bohrer D (2015) Distribution of total sulfur in acidic, basic, and neutral fractions on Brazilian asphalt cements and its relationship to the aging process. Energ Fuels 29:1431–1437

    Article  Google Scholar 

  47. Da Silveira GD, Hoinacki CK, Goularte RB, Nascimento PC, Bohrer D, Cravo M, Leite LFM, de Carvalho LM (2017) A cleanup method using solid phase extraction for the determination of organosulfur compounds in petroleum asphalt cements. Fuel 202:206–215

    Article  Google Scholar 

  48. Da Silveira GD, de Carvalho LM, Montoya N, Doménech-Carbó A (2017) Solid state electrochemical behavior of organosulfur compounds. J Electroanal Chem 806:180–190

    Article  Google Scholar 

  49. Da Silveira GD, de Carvalho LM, Montoya N, Doménech-Carbó A (2018) Evaluation of aging processes of petroleum asphalt cements by solid state electrochemical monitoring. Electrochim Acta 270:461–470

    Article  Google Scholar 

  50. Rogers RN (2005) Studies on the radiocarbon simple from the shroud of Turin. Thermochim Acta 425:189–194

    Article  CAS  Google Scholar 

  51. Deng P, Xu Z, Zeng R, Ding C (2015) Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene–polyvinylpyrrolidone composite film. Food Chem 180:156–163

    Article  CAS  PubMed  Google Scholar 

  52. Doménech-Carbó A, Doménech-Carbó MT, Ferragud-Adam X, Ramírez-Rodríguez M. Unpublished results

    Google Scholar 

  53. Yang R, Wang S, Zhao K, Li Y, Li C, **a Y, Liu Y (2017) Comparison of oxidation polymerization methods of thiophene in aqueous medium and its mechanism. Polym Sci B 59:16–27

    CAS  Google Scholar 

  54. Nowaczyk J, Kadac K, Olewnik-Kruszkowska E (2015) Emulsion polymerization of thiophene—the new way of conducting polymers shyntesis. Avd Sci Technol Res J 9:118–122

    Article  Google Scholar 

  55. Noked M, Soffer A, Aurbach D (2011) The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15:1563–1578

    Article  CAS  Google Scholar 

  56. Barrière F, Downard AJ (2008) Covalent modification of graphitic carbon substrates by non-electrochemical methods. J Solid State Electrochem 12:1231–1244

    Article  Google Scholar 

  57. Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  58. Barisci JN, Wallace GG, Baughman RH (2000) Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J Electroanal Chem 488:92–98

    Article  CAS  Google Scholar 

  59. Davies TJ, Hyde ME, Compton RG (2005) Nanotrench arrays reveal insight into graphite electrochemistry. Angew Chem Int Ed 44:5121–5126

    Article  CAS  Google Scholar 

  60. Doménech-Carbó A, Doménech-Carbó MT, Carrión Y, Ramírez-Rodríguez M, Olivares-Alatalaguerri S. Unpublished results

    Google Scholar 

Additional Literature

  1. Hernández VA, Hermes M, Milchev A, Scholz F (2009) The overall adhesion-spreading process of liposomes on a mercury electrode is controlled by a mixed diffusion and reaction kinetics mechanism. J Solid State Electrochem 13:639–649

    Article  Google Scholar 

  2. Bezerra RMR, Neves ACO, Pimenta AS, Lima KMG (2015) Estimation of Brazilian charcoal properties using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry coupled with multivariate analysis. Anal Methods 7:5695–5701

    Article  CAS  Google Scholar 

  3. Braunger ML, Barros A, Ferreira M, Olivati CA (2015) Electrical and electrochemical measurements in nanostructured films of polythiophene derivatives. Electrochim Acta 165:1–6

    Article  CAS  Google Scholar 

  4. Cohen-Ofri I, Weiner L, Boaretto E, Mintz G, Weiner S (2006) Modern and fossil charcoal: aspects of structure and diagenesis. J Archaeol Sci 33:428–439

    Article  Google Scholar 

  5. de Carvalho LM, Hilgemann M, Scholz F, Kahlert H, da Rosa MB, Wuster M, Lindequist U, do Nascimento PC, Bohrer D (2010) Electrochemical assay to quantify the hydroxyl radical scavenging activity of medicinal plant extracts. Electroanalysis 22(4):406−412

    Google Scholar 

  6. Davrieux F, Rousset PLA (2010) Discrimination of native wood charcoal by infrared spectroscopy. Quim Nova 33:1093–1097

    Article  CAS  Google Scholar 

  7. Doménech-Carbó A, Cebrián_Torrejón G, Lopes-Souto A, de-Moraes MM, Jorge-Kato K, Fechine-Tavares J, Barbosa-Filho JM (2015) Electrochemical ecology: VIMP monitoring of plant defense against external stressors. RSC Adv 5(75):61006−61011

    Google Scholar 

  8. Doménech-Carbó A, Dias D, Donnici M (2021) In vivo electrochemical monitoring of signaling transduction of plant defense against stress in leaves of Aloe vera L. Electroanalysis 33:1024–1032

    Article  Google Scholar 

  9. Domínguez I, Doménech-Carbó A (2015) Screening and authentication of tea varieties based on microextraction-assisted voltammetry of microparticles. Sensors Actuator B 210:491–499

    Article  Google Scholar 

  10. Doménech-Carbó A, Montoya N, Soriano P, Estrelles A (2018) An electrochemical analysis suggests role of gynodioecy in adaptation to stress in Cortaderia selloana. Curr Plant Biol 16:9–14

    Article  Google Scholar 

  11. Domínguez-Delmás M, Bossema FG, van der Mark B, Kostenko A, Coban SB, van Daalen S, van Duin P, Batenburg KJ (2021) Dating and provenancing the Woman with lantern sculpture—a contribution towards attribution of Netherlandish art. J Cult Herit 50:179–187

    Article  Google Scholar 

  12. Fu L, Zheng Y, Zhang P, Zhu J, Zhang H, Zhang L, Su W (2018) Embedding leaf tissue in graphene ink to improve signals in electrochemistry-based chemotaxonomy. Electrochem Commun 92:39–42

    Article  CAS  Google Scholar 

  13. Ghica ME, Oliveira-Brett AM (2005) Electrochemical oxidation of rutin. Electroanalysis 17:313–318

    Article  CAS  Google Scholar 

  14. Han B, Daheur G, Sablier M (2016) Py-GCxGC/MS in cultural heritage studies: an illustration through analytical characterization of traditional East Asian handmade papers. J Anal Appl Pyrolysis 122:458–467

    Article  CAS  Google Scholar 

  15. Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution. J Solid State Electrochem 13:385–390

    Article  CAS  Google Scholar 

  16. Le Bourvellec C, Hauchard D, Darchen A, Burgot J-L, Abasq M-L (2008) Validation of a new method using the reactivity of electrogenerated superoxide radical in the antioxidant capacity determination of flavonoids. Talanta 75:1098–1110

    Article  PubMed  Google Scholar 

  17. Ma R, Lin G, Zhou Y, Liu Q, Zhang T, Shan G, Yang M, Wang J (2019) A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts.npj Comput Mat 5:78

    Google Scholar 

  18. Ortiz-Miranda AS, König P, Kahlert H, Scholz F, Osete-Cortina L, Doménech-Carbó MT, Doménech-Carbó A (2016) Voltammetric analysis of Pinus needles with physiological, phylogenetic and forensic applications. Anal Bioanal Chem 408:4943–4952

    Article  CAS  PubMed  Google Scholar 

  19. Ouyang C, Wang X (2020) Recent progress in pyrolyzed carbon materials as electrocatalysts for the oxygen reduction reaction. Inorg Chem Front 7:28–36

    Article  CAS  Google Scholar 

  20. Piech R, Bás B, Rubiak WW, Paczosa-Bator B (2012) Fast cathodic strip** volammetric determination of elemental sulfur in petroleum fuels using renewable mercury film silver based electrode. Fuel 97:876–878

    Article  CAS  Google Scholar 

  21. Romagnoli M, D’Alessandro L, Seccaroni C, Moioli P, Poggi D, Grabner M (2016) The Pietà di Ragusa panel: a science-based contribution to its dating by dendrochronology, wood anatomy and pigment analysis. J Cult Herit 21:767–774

    Article  Google Scholar 

  22. Scholz F, González GLL, de Carvalho LM, Hilgemann M, Brainina KhZ, Kahlert H, Jack RS, Minh DT (2007) An electrochemical system to detect free radicals and radical scavengers in solution. Angew Chem Int Ed 46:8079–8082

    Article  CAS  Google Scholar 

  23. Serafim DM, Stradiotto NR (2008) Determination of sulfur compounds in gasoline using mercury film electrode by square wave voltammetry. Fuel 87:1007–1013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Doménech-Carbó .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doménech-Carbó, A., Doménech-Carbó, M.T. (2023). Organic Materials. In: Electrochemistry for Cultural Heritage. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-31945-7_9

Download citation

Publish with us

Policies and ethics

Navigation