Vegetation Fires and Entropy Variations in Myanmar

  • Chapter
  • First Online:
Vegetation Fires and Pollution in Asia

Abstract

Vegetation fires are most common in South/Southeast Asian countries. For effective mitigation and control of fires, it is essential to quantify the spatial and temporal patterns, including the variability. In this study, we use Shannon’s entropy measure to quantify the heterogeneity or a degree of randomness in fires in Myanmar. We used VIIRS 375 m and MODIS 1 km satellite data to quantify the spatial and temporal variations in fire counts (FC) and burnt areas (BA). VIIRS fire analysis suggested the mean FC from 2012 to 2020 for Myanmar with 34,7930 FC per year, with the highest 403,292 in 2013 and a minimum of 254,106 in 2018. Most of the fires with high intensity (FRP) occurred in the dry season (February-March-April), with the highest intensity in March (~ 203,897MW). Temporal variations in BA suggested an average of 655,296.85 (km2) BA per year, with the highest in forests (411,125.75 km2), followed by croplands (159,908.93 km2) and grasslands (84,262.16 km2). Results suggested forest fires with higher entropies than agricultural fires. Specifically, the forest fires in central Myanmar bordering the southern Sagaing, Shan north, and Mandalay and Magway regions had higher entropies. Further, entropy values did not show significant variations with the elevation, except in northern Kachin, Shan (east), northwestern Sagaing, and forest lands in the Chin state and along Magway and Rakhine regions. The entropy index indicates variability and is a measure of disorder or a degree of uncertainty, such as randomness, unevenness, irregularity, and complexity. Thus, controlling the fires in regions with high entropy can be challenging. The results also identify hotspots of vegetation fires with less entropy for effective fire control and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albar, I., I. Jaya, B.H. Saharjo, B. Kuncahyo, and K.P. Vadrevu. 2018. Spatio-temporal analysis of land and forest fires in Indonesia using MODIS active fire dataset. In Land-atmospheric research applications in South and Southeast Asia, 105–127. Cham: Springer.

    Google Scholar 

  • Altieri, L., D. Cocchi, and G. Roli. 2018. A new approach to spatial entropy measures. Environmental and Ecological Statistics 25 (1): 95–110.

    Article  Google Scholar 

  • Badarinath, K.V.S., and K.V. Prasad. 2011. Carbon dioxide emissions from forest biomass burning in India. Global Environmental Research 15: 45–52.

    Google Scholar 

  • Badarinath, K.V.S., S.K. Kharol, K.M. Latha, T.K. Chand, V.K. Prasad, A.N. Jyothsna, and K. Samatha. 2007. Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmospheric Science Letters 8 (1): 7–13.

    Article  Google Scholar 

  • Badarinath, K.V.S., S. Kumar Kharol, V. Krishna Prasad, A. Rani Sharma, E.U.B. Reddi, H.D. Kambezidis, and D.G. Kaskaoutis. 2008. Influence of natural and anthropogenic activities on UV index variations—A study over tropical urban region using ground based observations and satellite data. Journal of Atmospheric Chemistry 59 (3): 219–236.

    Google Scholar 

  • Badarinath, K.V.S., S.K. Kharol, A.R. Sharma, and V.K. Prasad. 2009. Analysis of aerosol and carbon monoxide characteristics over Arabian Sea during crop residue burning period in the Indo-Gangetic Plains using multi-satellite remote sensing datasets. Journal of Atmospheric and Solar-Terrestrial Physics 71 (12): 1267–1276.

    Article  Google Scholar 

  • Biswas, S., K.D. Lasko, and K.P. Vadrevu. 2015a. Fire disturbance in tropical forests of Myanmar—Analysis using MODIS satellite datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (5): 2273–2281.

    Article  Google Scholar 

  • Biswas, S., K.P. Vadrevu, Z.M. Lwin, K. Lasko, and C.O. Justice. 2015b. Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS One 10 (4): e0124346.

    Google Scholar 

  • Biswas, S., K.P. Vadrevu, M.S. Mon, and C. Justice. 2021. Contemporary forest loss in Myanmar: Effect of democratic transition and subsequent timber bans on landscape structure and composition. Ambio 50 (4): 914–928.

    Article  Google Scholar 

  • Bond, W.J., and J.E. Keeley. 2005. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20 (7): 387–394.

    Article  Google Scholar 

  • Choi, Y., S.A. Vay, K.P. Vadrevu, A.J. Soja, J.H. Woo, S.R. Nolf, G.W. Sachse, G.S. Diskin, D.R. Blake, N.J. Blake, and H.B. Singh. 2008. Characteristics of the atmospheric CO2 signal as observed over the conterminous United States during INTEX‐NA. Journal of Geophysical Research: Atmospheres 113 (D7).

    Google Scholar 

  • Chuvieco, E. 2009. Earth observation of wildland fires in Mediterranean ecosystems. Berlin: Springer.

    Google Scholar 

  • Cover, T., and J. Thomas. 2006. Elements of information theory, 2nd ed. Hoboken: Wiley.

    Google Scholar 

  • Crutzen, P.J., and M.O. Andreae. 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250 (4988): 1669–1678.

    Google Scholar 

  • Cui, H., B. Sivakumar, and V.P. Singh. 2018. Entropy applications in environmental and water engineering. Entropy 20 (8): 598.

    Article  Google Scholar 

  • Eva, H., and E.F. Lambin. 2000. Fires and land-cover change in the tropics: A remote sensing analysis at the landscape scale. Journal of Biogeography 27 (3): 765–776.

    Article  Google Scholar 

  • Giglio, L., J. Descloitres, C.O. Justice, and Y.J. Kaufman. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment 87 (2–3): 273–282.

    Article  Google Scholar 

  • Giglio, L., C. Justice, L. Boschetti, D. Roy. 2015. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006. distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD64A1.006. Accessed 2023-04-03.

  • Giglio, L., L. Boschetti, D.P. Roy, M.L. Humber, and C.O. Justice. 2018. The collection 6 MODIS burned area map** algorithm and product. Remote Sensing of Environment 217: 72–85.

    Article  Google Scholar 

  • Hough, J.L. 1993. Why burn the bush? Social approaches to bush-fire management in West African national parks. Biological Conservation 65 (1): 23–28.

    Article  Google Scholar 

  • Jaynes, E.T. 1979. Concentration of distributions at entropy maxima. In ET Jaynes: Papers on probability, statistics and statistical physics, 315.

    Google Scholar 

  • Justice, C., G. Gutman, and K.P. Vadrevu. 2015. NASA land cover and land use change (LCLUC): An interdisciplinary research program. Journal of Environmental Management 148: 4–9.

    Article  Google Scholar 

  • Kant, Y., V.K. Prasad, and K.V.S. Badarinath. 2000. Algorithm for detection of active fire zones using NOAA AVHRR data. Infrared Physics & Technology 41 (1): 29–34.

    Article  Google Scholar 

  • Kaufman, Y.J., C.O. Justice, L.P. Flynn, J.D. Kendall, E.M. Prins, L. Giglio, D.E. Ward, W.P. Menzel, and A.W. Setzer. 1998. Potential global fire monitoring from EOS-MODIS. Journal of Geophysical Research: Atmospheres 103 (D24): 32215–32238.

    Article  Google Scholar 

  • Kharol, S.K., K.V.S. Badarinath, A.R. Sharma, D.V. Mahalakshmi, D. Singh, and V.K. Prasad. 2012. Black carbon aerosol variations over Patiala city, Punjab, India—A study during agriculture crop residue burning period using ground measurements and satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 84: 45–51.

    Article  Google Scholar 

  • Lasko, K., and K. Vadrevu. 2018. Improved rice residue burning emissions estimates: Accounting for practice-specific emission factors in air pollution assessments of Vietnam. Environmental Pollution 236: 795–806.

    Article  Google Scholar 

  • Lasko, K., K.P. Vadrevu, V.T. Tran, E. Ellicott, T.T. Nguyen, H.Q. Bui, and C. Justice. 2017. Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environmental Research Letters 12 (8): 085006.

    Article  Google Scholar 

  • Lasko, K., K.P. Vadrevu, and T.T.N. Nguyen. 2018. Analysis of air pollution over Hanoi, Vietnam using multi-satellite and MERRA reanalysis datasets. PLoS One 13 (5): e0196629.

    Google Scholar 

  • Lata, K.M., C.H. Sankar Rao, V. Krishna Prasad, K.V.S. Badrinath, and V. Raghavaswamy. 2001. Measuring urban sprawl: A case study of Hyderabad. GIS Development 5 (12): 22–25.

    Google Scholar 

  • Maruyama, T., T. Kawachi, and V.P. Singh. 2005. Entropy-based assessment and clustering of potential water resources availability. Journal of Hydrology 309 (1–4): 104–113.

    Article  Google Scholar 

  • Petropoulos, G.P., K.P. Vadrevu, and C. Kalaitzidis. 2013. Spectral angle mapper and object-based classification combined with hyperspectral remote sensing imagery for obtaining land use/cover map** in a Mediterranean region. Geocarto International 28 (2): 114–129.

    Article  Google Scholar 

  • Prasad, V.K., and K.V.S. Badarinth. 2004. Land use changes and trends in human appropriation of above ground net primary production (HANPP) in India (1961–98). Geographical Journal 170 (1): 51–63.

    Article  Google Scholar 

  • Prasad, K.V., and K.V.S. Badarinath. 2006. Soil surface nitrogen losses from agriculture in India: A regional inventory within agroecological zones (2000–2001). The International Journal of Sustainable Development and World Ecology 13 (3): 173–182.

    Article  Google Scholar 

  • Prasad, V.K., Y. Kant, P.K. Gupta, C. Sharma, A.A. Mitra, and K.V.S. Badarinath. 2001a. Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India. Atmospheric Environment 35 (18): 3085–3095.

    Article  Google Scholar 

  • Prasad, V.K., Y. Kant, and K.V.S. Badarinath. 2001b. CENTURY ecosystem model application for quantifying vegetation dynamics in shifting cultivation areas: A case study from Rampa Forests, Eastern Ghats (India). Ecological Research 16 (3): 497–507.

    Article  Google Scholar 

  • Prasad, V.K., Y. Kant, P.K. Gupta, C. Elvidge, and K.V.S. Badarinath. 2002a. Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: A study using DMSP-OLS data and ground-based measurements. International Journal of Remote Sensing 23 (14): 2837–2851.

    Article  Google Scholar 

  • Prasad, V.K., Y. Kant, and K.V.S. Badarinath. 2002b. Land use changes and modeling carbon fluxes from satellite data. Advances in Space Research 30 (11): 2511–2516.

    Article  Google Scholar 

  • Prasad, V.K., M. Lata, and K.V.S. Badarinath. 2003. Trace gas emissions from biomass burning from northeast region in India—Estimates from satellite remote sensing data and GIS. The Environmentalist 23 (3): 229–236.

    Article  Google Scholar 

  • Prasad, V.K., K.V.S. Badarinath, S. Yonemura, and H. Tsuruta. 2004. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000–2001). Journal of Environmental Management 73 (3): 209–218.

    Article  Google Scholar 

  • Prasad, V.K., E. Anuradha, and K.V.S. Badarinath. 2005. Climatic controls of vegetation vigor in four contrasting forest types of India—Evaluation from National Oceanic and Atmospheric Administration’s advanced very high resolution radiometer datasets (1990–2000). International Journal of Biometeorology 50 (1): 6–16.

    Article  Google Scholar 

  • Schroeder, W., P. Oliva, L. Giglio, and I.A. Csiszar. 2014. The new VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment 143: 85–96.

    Google Scholar 

  • Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27 (3): 379–423.

    Article  Google Scholar 

  • Stott, P. 2000. Combustion in tropical biomass fires: A critical review. Progress in Physical Geography 24 (3): 355–377.

    Article  Google Scholar 

  • Vadrevu, K.P. 2008. Analysis of fire events and controlling factors in eastern India using spatial scan and multivariate statistics. Geografiska Annaler: Series A, Physical Geography 90 (4): 315–328.

    Google Scholar 

  • Vadrevu, K. 2015. International regional science meeting of NASA-LCLUC: Land cover/land use change (LC/LUC) and environmental impacts in South Asia, Coimbatore, India, 19–23 January 2013. Journal of Environmental Management 148: 1–163.

    Article  Google Scholar 

  • Vadrevu, K.P., and K.V.S. Badarinath. 2009. Spatial pattern analysis of fire events in Central India—A case study. Geocarto International 24 (2): 115–131.

    Article  Google Scholar 

  • Vadrevu, K.P., and C.O. Justice. 2011. Vegetation fires in the Asian region: Satellite observational needs and priorities. Global Environmental Research 15 (1): 65–76.

    Google Scholar 

  • Vadrevu, K., and K. Lasko. 2015. Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. Journal of Environmental Management 148: 10–20.

    Article  Google Scholar 

  • Vadrevu, K.P., K.V.S. Badarinath, and E. Anuradha. 2008. Spatial patterns in vegetation fires in the Indian region. Environmental Monitoring and Assessment 147 (1): 1–13.

    Article  Google Scholar 

  • Vadrevu, K.P., L. Giglio, and C. Justice. 2013. Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmospheric Environment 64: 179–191.

    Article  Google Scholar 

  • Vadrevu, K.P., T. Ohara, and C. Justice. 2014. Air pollution in Asia. Environmental Pollution (Barking, Essex: 1987) 195: 233–235.

    Google Scholar 

  • Vadrevu, K., T. Ohara, and C. Justice. 2017. Land cover, land use changes and air pollution in Asia: A synthesis. Environmental Research Letters 12 (12): 120201.

    Article  Google Scholar 

  • Vadrevu, K.P., T. Ohara, and C. Justice (eds.). 2018. Land-atmospheric research applications in South and Southeast Asia. Berlin: Springer.

    Google Scholar 

  • Vadrevu, K., A. Heinimann, G. Gutman, and C. Justice. 2019a. Remote sensing of land use/cover changes in South and Southeast Asian Countries. International Journal of Digital Earth 12 (10): 1099–1102.

    Article  Google Scholar 

  • Vadrevu, K.P., K. Lasko, L. Giglio, W. Schroeder, S. Biswas, and C. Justice. 2019b. Trends in vegetation fires in South and Southeast Asian countries. Scientific Reports 9 (1): 1–13.

    Article  Google Scholar 

  • Vadrevu, K.P., T. Ohara, and C. Justice (eds.). 2021a. Biomass burning in South and Southeast Asia: Impacts on the biosphere, vol. 2. Boca Raton: CRC Press.

    Google Scholar 

  • Vadrevu, K.P., T. Ohara, and C. Justice (eds.). 2021b. Biomass burning in South and Southeast Asia: Map** and monitoring, vol. 1. Boca Raton: CRC Press.

    Google Scholar 

  • Vadrevu, K.P., T. Le Toan, S.S. Ray, and C. Justice. 2022a. Remote sensing of agriculture and land cover/land use changes in South and Southeast Asian countries. Cham: Springer.

    Google Scholar 

  • Vadrevu, K., A. Eaturu, E. Casadaban, K. Lasko, W. Schroeder, S. Biswas, L. Giglio, and C. Justice. 2022b. Spatial variations in vegetation fires and emissions in South and Southeast Asia during COVID-19 and pre-pandemic. Scientific Reports 12 (1): 1–21.

    Google Scholar 

  • Vay, S.A., Y. Choi, K.P. Vadrevu, D.R. Blake, S.C. Tyler, A. Wisthaler, A. Hecobian, Y. Kondo, G.S. Diskin, G.W. Sachse, and J.H. Woo. 2011. Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008. Journal of Geophysical Research: Atmospheres 116 (D14).

    Google Scholar 

  • Wooster, M.J., G.J. Roberts, L. Giglio, D.P. Roy, P.H. Freeborn, L. Boschetti, C. Justice, C. Ichoku, W. Schroeder, D. Davies, and A.M. Smith. 2021. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment 267: 112694.

    Article  Google Scholar 

  • Worldcover. 2020. https://worldcover2020.esa.int/data/docs/WorldCover_PUM_V1.1.pdf.

  • Yadav, P.K. 2013. Slash-and-burn agriculture in north-east India. Journal of Expert Opinion on Environmental Biology 2: 2–5.

    Google Scholar 

  • You, L., and S. Wood. 2005. Assessing the spatial distribution of crop areas using a cross-entropy method. International Journal of Applied Earth Observation and Geoinformation 7 (4): 310–323.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the NASA Land Cover/Land Use Change Program, South/Southeast Asia Research Initiative project to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Vadrevu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vadrevu, K.P., Salikineedi, P., Eaturu, A., Biswas, S. (2023). Vegetation Fires and Entropy Variations in Myanmar. In: Vadrevu, K.P., Ohara, T., Justice, C. (eds) Vegetation Fires and Pollution in Asia. Springer, Cham. https://doi.org/10.1007/978-3-031-29916-2_4

Download citation

Publish with us

Policies and ethics

Navigation