Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 229 Accesses

Abstract

In the past few chapters, we show how data analytics can solve technical challenges and provide situational awareness for the future. Given the fact that many regions have undergone wholesale deregulation in the electricity sector, solutions will need to be physically viable and compatible with the electricity market environment. With new players in different parts of smart grids, in past markets the need to adapt or extended to fulfill the needs from new market participators. Therefore, based on energy use, the consumers’ flow of money can be analyzed to that they can own for the costs of using their appliances, as discussed in Chap. 2. We will provide a data-driven market design by showing how to limit risks from the generation side and load side. The goal is to design tools for new market for quantifiable and rigorous bound on the risk of violating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Hurley, P. Peterson, M. Whited, Demand Response as a Power System Resource (Synapse Energy Economics, Cambridge, 2013)

    Google Scholar 

  2. ERCOT quick facts. [Online]. Available: https://goo.gl/x7cCXc. Accessed 30 Sep 2018

  3. 2016 LTSA update. [Online]. Available: https://goo.gl/9fo9FD. Accessed 30 Sep 2018

  4. P.P. Varaiya, F.F. Wu, J.W. Bialek, Smart operation of smart grid: risk-limiting dispatch. Proc. IEEE 99(1), 40–57 (2011)

    Article  Google Scholar 

  5. R. Entriken, P. Varaiya, F. Wu, J. Bialek, C. Dent, A. Tuohy, R. Rajagopal, Risk limiting dispatch, in 2012 IEEE Power and Energy Society General Meeting (2012), pp. 1–5

    Google Scholar 

  6. L. Wu, M. Shahidehpour, T. Li, Stochastic security-constrained unit commitment. IEEE Trans. Power Syst. 22(2), 800–811 (2007)

    Article  Google Scholar 

  7. A. Papavasiliou, S.S. Oren, R.P.O. Neill, Reserve requirements for wind power integration: a stochastic programming framework. IEEE Trans. Power Syst. 26(4), 2197–2206 (2011)

    Article  Google Scholar 

  8. D. Bertsimas, E. Litvinov, X.A. Sun, J. Zhao, T. Zheng, Adaptive robust optimization for the security constrained unit commitment problem. IEEE Trans. Power Syst. 28(1), 52–63 (2013)

    Article  Google Scholar 

  9. N. Zhang, C. Kang, Q. **a, Y. Ding, Y. Huang, R. Sun, J. Huang, J. Bai, A convex model of risk-based unit commitment for day-ahead market clearing considering wind power uncertainty. IEEE Trans. Power Syst. 30(3), 1582–1592 (2015)

    Article  Google Scholar 

  10. D. Ross, S. Kim, Dynamic economic dispatch of generation. IEEE Trans. Power Apparatus Syst. PAS-99(6), 2060–2068 (1980)

    Article  Google Scholar 

  11. Y. Gu, L. **e, Early detection and optimal corrective measures of power system insecurity in enhanced look-ahead dispatch. IEEE Trans. Power Syst. 28(2), 1297–1307 (2013)

    Article  Google Scholar 

  12. Á. Lorca, X.A. Sun, Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch. IEEE Trans. Power Syst. 30(4), 1702–1713 (2015)

    Article  Google Scholar 

  13. Q. Wang, B.M. Hodge, Enhancing power system operational flexibility with flexible ram** products: a review. IEEE Trans. Ind. Inform. 13(4), 1652–1664 (2017)

    Article  Google Scholar 

  14. A.A. Thatte, L. **e, A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch. IEEE Trans. Power Syst. 31(5), 3437–3446 (2016)

    Article  Google Scholar 

  15. A.A. Thatte, X.A. Sun, L. **e, Robust optimization based economic dispatch for managing system ramp requirement, in Proceedings of the Annual Hawaii International Conference on System Sciences (2014), pp. 2344–2352

    Google Scholar 

  16. A. Ben-Tal, A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Ben-Tal, A. Nemirovski, On tractable approximations of uncertain linear matrix inequalities affected by interval uncertainty. SIAM J. Optim. 12(3), 811–833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Calafiore, M.C. Campi, The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Prékopa, Stochastic Programming (Springer Science & Business Media, Cham, 2013)

    Google Scholar 

  20. M.W. Tanner, L. Ntaimo, IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation. Eur. J. Oper. Res. 207(1), 290–296 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Zeng, Y. An, L. Kuznia, Chance constrained mixed integer program: Bilinear and linear formulations, and benders decomposition (2014). Preprint ar**v:1403.7875. https://arxiv.org/abs/1403.7875

  22. A. Nemirovski, A. Shapiro, Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization (Princeton University Press, Princeton, 2009)

    Book  MATH  Google Scholar 

  24. M.C. Campi, S. Garatti, The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. M.C. Campi, S. Garatti, A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148(2), 257–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Margellos, P. Goulart, J. Lygeros, On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59(8), 2258–2263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Grammatico, X. Zhang, K. Margellos, P. Goulart, J. Lygeros, A scenario approach to non-convex control design: Preliminary probabilistic guarantees, in 2014 American Control Conference (2014), pp. 3431–3436

    Google Scholar 

  28. M. Vrakopoulou, K. Margellos, J. Lygeros, G. Andersson, A probabilistic framework for reserve scheduling and N-1 security assessment of systems with high wind power penetration. IEEE Trans. Power Syst. 28(4), 3885–3896 (2013)

    Article  Google Scholar 

  29. H. Ming, L. **e, M.C. Campi, S. Garatti, P.R. Kumar, Scenario-based economic dispatch with uncertain demand response. IEEE Trans. Smart Grid 10, 1858–1868 (2017)

    Article  Google Scholar 

  30. M.C. Campi, S. Garatti, Wait-and-judge scenario optimization. Math. Programm. 167(1), 155–189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. A.J. Wood, B.F. Wollenberg, Power Generation, Operation, and Control (Wiley, Hoboken, 2012)

    Google Scholar 

  32. G. Calafiore, M.C. Campi, Uncertain convex programs: randomized solutions and confidence levels. Math. Programm. 102(1), 25–46 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.A. Thatte, Y. Li, L. **e, Managing system ramp flexibility by utilizing price-responsive demand: An empirical assessment, in 2016 49th Hawaii International Conference on System Sciences (HICSS) (IEEE, Piscataway, 2016), pp. 2345–2353

    Google Scholar 

  34. H.A. Nasir, T. Zhao, A. Carè, Q.J. Wang, and E. Weyer, Efficient river management using stochastic MPC and ensemble forecast of uncertain in-flows, in IFAC-PapersOnLine (Elsevier, Amsterdam, 2018), pp. 37–42

    Google Scholar 

  35. S. Garatti, M.C. Campi, Modulating robustness in control design: principles and algorithms. IEEE Control Syst. 33(2), 36–51 (2013)

    Article  MathSciNet  Google Scholar 

  36. T. Zheng, E. Litvinov, On ex post pricing in the real-time electricity market. IEEE Trans. Power Syst. 26(1), 153–164 (2011)

    Article  Google Scholar 

  37. A.L. Ott, Experience with PJM market operation, system design, and implementation. IEEE Trans. Power Syst. 18(2), 528–534 (2003)

    Article  Google Scholar 

  38. M.S. Modarresi, L. **e, M.C. Campi, S. Garatti, A. Care, A.A. Thatte, P. Kumar, Scenario-based economic dispatch with tunable risk levels in high-renewable power systems. IEEE Trans. Power Syst. 34(6), 5103–5114 (2018)

    Article  Google Scholar 

  39. F. Li, Y. Wei, S. Adhikari, Improving an unjustified common practice in ex post LMP calculation. IEEE Trans. Power Syst. 25(2), 1195–1197 (2010)

    Article  Google Scholar 

  40. D.H. Choi, L. **e, Economic impact assessment of topology data attacks with virtual bids. IEEE Trans. Smart Grid 9(2), 512–520 (2018)

    Article  Google Scholar 

  41. W.W. Hogan et al., Financial transmission rights, revenue adequacy and multi-settlement electricity markets. unpublished.[Online]. Available Harvard University web site: http://www.hks.harvard. edu/fs/whogan/Hogan_FTR_Rev_Adequacy_, vol. 31813 (2012)

  42. M.C. Campi, S. Garatti, M. Prandini, The scenario approach for systems and control design. IFAC Proc. Vol. 41(2), 381–389 (2008)

    Article  Google Scholar 

  43. G. Schildbach, L. Fagiano, M. Morari, Randomized solutions to convex programs with multiple chance constraints. SIAM J. Optim. 23(4), 2479–2501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. X. Zhang, S. Grammatico, G. Schildbach, P. Goulart, J. Lygeros, On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60, 182–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Carè, S. Garatti, M.C. Campi, Fast-fast algorithm for the scenario technique. Oper. Res. 62(3), 662–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. M.C. Campi, A. Carè, Random convex programs with L1-regularization: sparsity and generalization. SIAM J. Control Optim. 51(5), 3532–3557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. V.L. Levin, Application of E. Helly’s theorem to convex programming, problems of best approximation and related questions. Sbornik: Math. 8(2), 235–247 (1969)

    Google Scholar 

  48. A.B. Birchfield, K.M. Gegner, T. Xu, K.S. Shetye, T.J. Overbye, Statistical considerations in the creation of realistic synthetic power grids for geomagnetic disturbance studies. IEEE Trans. Power Syst. 32(2), 1502–1510 (2017)

    Google Scholar 

  49. R.D. Zimmerman, C.E. Murillo-Sanchez, R.J. Thomas, MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

  50. California ISO, Demand response & proxy demand resource-frequently asked questions. https://www.caiso.com/Documents/DemandResponseandProxyDemandResourcesFrequently AskedQuestions.pdf

  51. J. McAnany, 2014 demand response operations–market activity report: May (2015)

    Google Scholar 

  52. J.L. Mathieu, D.S. Callaway, S. Kiliccote, Examining uncertainty in demand response baseline models and variability in automated responses to dynamic pricing, in 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (IEEE, Piscataway, 2011), pp. 4332–4339

    Google Scholar 

  53. J.L. Mathieu, M. Gonzalez Vaya, G. Andersson, Uncertainty in the flexibility of aggregations of demand response resources, in Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (IEEE, Piscataway, 2013), pp. 8052–8057

    Google Scholar 

  54. J. Zhao, F. Wen, Y. Xue, Z. Dong, J. **n, Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators. Dianli **tong Zidonghua (Autom. Electric Power Syst.) 34(20), 22–29 (2010)

    Google Scholar 

  55. J. Dhillon, S. Parti, D. Kothari, Stochastic economic emission load dispatch. Electr. Pow. Syst. Res. 26(3), 179–186 (1993)

    Article  Google Scholar 

  56. A.A. Thatte, X.A. Sun, L. **e, Robust optimization based economic dispatch for managing system ramp requirement, in 2014 47th Hawaii International Conference on System Sciences (HICSS) (IEEE, Piscataway, 2014), pp. 2344–2352

    Google Scholar 

  57. Á. Lorca, X.A. Sun, E. Litvinov, T. Zheng, Multistage adaptive robust optimization for the unit commitment problem. Oper. Res. 64, 32–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. M.C. Campi, S. Garatti, M. Prandini, The scenario approach for systems and control design. Annu. Rev. Control. 33(2), 149–157 (2009)

    Article  Google Scholar 

  59. Benefits of demand response in electricity markets and recommendations for achieving them, Tech. Rep. 2006, US Dept. Energy, Washington, DC, USA (2006). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a6a4ea518799c16a26f76597182df1cd0555c78e

    Google Scholar 

  60. H. Ming, L. **e, Analysis of coupon incentive-based demand response with bounded consumer rationality, in North American Power Symposium (NAPS), 2014 (IEEE, Piscataway, 2014), pp. 1–6

    Google Scholar 

  61. J. An, P. Kumar, L. **e, On transfer function modeling of price responsive demand: An empirical study, in Power & Energy Society General Meeting, 2015 IEEE (IEEE, Piscataway, 2015), pp. 1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

**e, L., Rajagopal, R., Weng, Y. (2023). Design New Markets. In: Data Science and Applications for Modern Power Systems. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-29100-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29100-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29099-2

  • Online ISBN: 978-3-031-29100-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation