Log in

Wait-and-judge scenario optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider convex optimization problems with uncertain, probabilistically described, constraints. In this context, scenario optimization is a well recognized methodology where a sample of the constraints is used to describe uncertainty. One says that the scenario solution generalizes well, or has a high robustness level, if it satisfies most of the other constraints besides those in the sample. Over the past 10 years, the main theoretical investigations on the scenario approach have related the robustness level of the scenario solution to the number of optimization variables. This paper breaks into the new paradigm that the robustness level is a-posteriori evaluated after the solution is computed and the actual number of the so-called support constraints is assessed (wait-and-judge). A new theory is presented which shows that a-posteriori observing k support constraints in dimension \(d > k\) allows one to draw conclusions close to those obtainable when the problem is from the outset in dimension k. This new theory provides evaluations of the robustness that largely outperform those carried out based on the number of optimization variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Measurability of \(V(x^*_N)\), as well as of other quantities, is taken for granted in this paper.

  2. An alternative way to express that \(x^*_N\) is robust at level \(\epsilon \) is that \(x^*_N\) is chance-constrained feasible at level \(\epsilon \) [19, 44, 46]. See [4, 31, 32, 3739, 54] for more discussion on chance-constrained optimization and its connection with scenario optimization.

  3. Computing the number of support constraints requires removing one by one the active constraints and verifying whether the solution changes, an operation that can be carried out at reasonably low computational cost.

  4. Problem (10) can be equivalently written as the following optimal control problem, which may offer further insight in the usability of the approach.

    Auxiliary dynamical system:

    $$\begin{aligned} \left\{ \begin{array}{rcl} \frac{\mathrm {d}}{\mathrm {d}t}z_0(t) &{} = &{} z_1(t) \\ \frac{\mathrm {d}}{\mathrm {d}t}z_1(t) &{} = &{} 2 \; z_2(t) \\ &{} \vdots &{} \\ \frac{\mathrm {d}}{\mathrm {d}t}z_{d-2}(t) &{} = &{} (d-1) \; z_{d-1}(t) \\ \frac{\mathrm {d}}{\mathrm {d}t}z_{d-1}(t) &{} = &{} d \; u(t). \end{array} \right. \end{aligned}$$

    Auxiliary optimal control problem:

    $$\begin{aligned} \gamma ^*= \inf _{z_0(0),\ldots ,z_{d-1}(0),u(\cdot ) \in \textsf {C}^0[0,1]}&z_0(1) \\ \text {subject to:}&z_k(t) \ge {N \atopwithdelims ()k} t^{N-k} \cdot \mathbf {1}_{[0,1-\epsilon (k))}(t), \quad t \in [0,1], \; k=0,1,\ldots ,d-1, \\&u(t) \ge {N \atopwithdelims ()d} t^{N-d} \cdot \mathbf {1}_{[0,1-\epsilon (d))}(t), \quad t \in [0,1]. \end{aligned}$$

    In the auxiliary optimal control problem, the optimization variables are the initial state and the input of the auxiliary dynamical system.

  5. At the present state of knowledge, whether or not a valid \(\epsilon (k)\) exists such that \(\epsilon (k) < \epsilon \) for some k while \(\epsilon (k) \le \epsilon \) for any k is still an open problem.

  6. Equation (18) can also be written in a more compact form using moment generating functions. Let \(\tilde{F}_k(t) := 1 - F_k(1 \! - \! t)\) and \(\tilde{M}_k(z)\) be the moment generating function of \(\tilde{F}_k(t)\). Multiplying the two sides of (18) by \(z^m/m!\) and summing up over m gives the equivalent characterization:

    $$\begin{aligned} \sum _{k=0}^d \frac{z^k}{k!} \tilde{M}_k(z) = \exp (z), \end{aligned}$$

    which is explained as follows. The right-hand side is obtained because \(\sum _{m=0}^\infty z^m/m! = \exp (z)\), while in the left-hand side the kth term is calculated as follows, \(\sum _{m=k}^\infty z^m/m! {m \atopwithdelims ()k} \int _{[0,1]} t^{m-k} \mathrm {d}\tilde{F}_k(t) = z^k/k! \int _{[0,1]} \sum _{m=k}^\infty (zt)^{m-k}/(m \! - \! k)! \mathrm {d}\tilde{F}_k(t) = z^k/k! \int _{[0,1]} \exp (zt) \mathrm {d}\tilde{F}_k(t) = (z^k/k!) \tilde{M}_k(z)\).

References

  1. Alamo, T., Tempo, R., Camacho, E.: Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems. IEEE Trans. Autom. Control 54(11), 2545–2559 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alamo, T., Tempo, R., Luque, A., Ramirez, D.R.: Randomized methods for design of uncertain systems: sample complexity and sequential algorithms. Automatica 51, 160–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, E., Nash, P.: Linear programming in infinite-dimensional spaces: theory and applications. Wiley, New York (1987)

    MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: On safe tractable approximations of chance-constrained linear matrix inequalities. Math. Oper. Res. 34(1), 1–25 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsimas, D., Thiele, A.: Robust and data-driven optimization: modern decision-making under uncertainty. In: Tutorials on Operations Research. INFORMS (2006)

  6. Borwein, J., Lewis, A.: Convex analysis and nonlinear optimization. Springer, New York (2005)

    Google Scholar 

  7. Calafiore, G., Campi, M.: Uncertain convex programs: randomized solutions and confidence levels. Math. Program. 102(1), 25–46 (2005). doi:10.1007/s10107-003-0499-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Calafiore, G., Campi, M.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Campi, M.: Classification with guaranteed probability of error. Mach. Learn. 80, 63–84 (2010)

    Article  MathSciNet  Google Scholar 

  10. Campi, M., Calafiore, G., Garatti, S.: Interval predictor models: identification and reliability. Automatica 45(2), 382–392 (2009). doi:10.1016/j.automatica.2008.09.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Campi, M., Carè, A.: Random convex programs with L1-regularization: sparsity and generalization. SIAM J. Control Optim. 51(5), 3532–3557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campi, M., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008). doi:10.1137/07069821X

    Article  MathSciNet  MATH  Google Scholar 

  13. Campi, M., Garatti, S.: A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality. J. Optim. Theory Appl. 148(2), 257–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campi, M., Garatti, S., Prandini, M.: The scenario approach for systems and control design. Annu. Rev. Control 33(2), 149–157 (2009). doi:10.1016/j.arcontrol.2009.07.001

    Article  Google Scholar 

  15. Carè, A., Garatti, S., Campi, M.: FAST—fast algorithm for the scenario technique. Oper. Res. 62(3), 662–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carè, A., Garatti, S., Campi, M.: Scenario min–max optimization and the risk of empirical costs. SIAM J. Optim. 25(4), 2061–2080 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crespo, L., Giesy, D., Kenny, S.: Interval predictor models with a formal characterization of uncertainty and reliability. In: Proceedings of the 53rd IEEE Conference on Decision and Control (CDC), pp. 5991–5996. Los Angeles, CA, USA (2014)

  18. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 58(3), 596–612 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dentcheva, D.: Optimization models with probabilistic constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty. Springer, London (2006)

    Google Scholar 

  20. Esfahani, P., Sutter, T., Lygeros, J.: Performance bounds for the scenario approach and an extension to a class of non-convex programs. IEEE Trans. Autom. Control 60(1), 46–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Farias, V., Jagabathula, S., Shah, D.: A nonparametric approach to modeling choice with limited data. Manag. Sci. 59(2), 305–322 (2013)

    Article  Google Scholar 

  22. Garatti, S., Campi, M.: Modulating robustness in control design: principles and algorithms. IEEE Control Syst. Mag. 33(2), 36–51 (2013). doi:10.1109/MCS.2012.2234964

    Article  MathSciNet  Google Scholar 

  23. Grammatico, S., Zhang, X., Margellos, K., Goulart, P., Lygeros, J.: A scenario approach for non-convex control design. IEEE Trans. Autom. Control 61(2), 334–345 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. http://cvxr.com/cvx (2014)

  25. Hong, L., Hu, Z., Liu, G.: Monte Carlo methods for value-at-risk and conditional value-at-risk: a review. ACM Trans. Model. Comput. Simul. 24(4), 22:1–22:37 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Krishnamoorthy, K., Mathew, T.: Statistical Tolerance Regions. Wiley, Hoboken (2009)

    Book  MATH  Google Scholar 

  27. Lasserre, J.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)

    Book  Google Scholar 

  28. Lei, J., Robins, J., Wasserman, L.: Distribution-free prediction sets. J. Am. Stat. Assoc. 108(501), 278–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lofberg, J.: Yalmip: a toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, pp. 284–289. Taipei, Taiwan (2004)

  30. Lucchetti, R.: Convexity and Well-Posed Problems. Springer, New York (2006)

    Book  MATH  Google Scholar 

  31. Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19, 674–699 (2008). doi:10.1137/070702928

    Article  MathSciNet  MATH  Google Scholar 

  32. Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with probabilistic constraints. Math. Program. 122(2), 247–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Luenberger, D.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  34. Margellos, K., Goulart, P., Lygeros, J.: On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control 59(8), 2258–2263 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Margellos, K., Prandini, M., Lygeros, J.: On the connection between compression learning and scenario based single-stage and cascading optimization problems. IEEE Trans. Autom. Control 60(10), 2716–2721 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. de Mello, T.H., Bayraksan, G.: Monte Carlo sampling-based methods for stochastic optimization. Surv. Oper. Res. Manag. Sci. 19(1), 56–85 (2014)

    MathSciNet  Google Scholar 

  37. Nemirovski, A.: On safe tractable approximations of chance constraints. Eur. J. Oper. Res. 219, 707–718 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nemirovski, A., Shapiro, A.: Convex approximations of chance constrained programs. SIAM J. Optim. 17(4), 969–996 (2006). doi:10.1137/050622328

    Article  MathSciNet  MATH  Google Scholar 

  39. Nemirovski, A., Shapiro, A.: Scenario approximations of chance constraints. In: Calafiore, G., Dabbene, F. (eds.) Probabilistic and Randomized Methods for Design Under Uncertainty. Springer, London (2006)

    Google Scholar 

  40. Pagnoncelli, B., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142(2), 399–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pagnoncelli, B., Reich, D., Campi, M.: Risk-return trade-off with the scenario approach in practice: a case study in portfolio selection. J. Optim. Theory Appl. 155(2), 707–722 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pagnoncelli, B., Vanduffel, S.: A provisioning problem with stochastic payments. Eur. J. Oper. Res. 221(2), 445–453 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Petersen, I.R., Tempo, R.: Robust control of uncertain systems: classical results and recent developments. Automatica 50, 1315–1335 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Prèkopa, A.: Stochastic Programming. Kluwer, Boston (1995)

    Book  MATH  Google Scholar 

  45. Schildbach, G., Fagiano, L., Morari, M.: Randomized solutions to convex programs with multiple chance constraints. SIAM J. Optim. 23(4), 2479–2501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  47. Shiryaev, A.: Probability. Springer, New York (1996)

    Book  MATH  Google Scholar 

  48. Tempo, R., Calafiore, G., Dabbene, F.: Randomized Algorithms for Analysis and Control of Uncertain Systems, 2nd edn. Springer, London (2013)

    Book  MATH  Google Scholar 

  49. Thiele, A.: Robust stochastic programming with uncertain probabilities. IMA J. Manag. Math. 19(3), 289–321 (2008). doi:10.1093/imaman/dpm011

    Article  MathSciNet  MATH  Google Scholar 

  50. Vayanos, P., Kuhn, D., Rustem, B.: A constraint sampling approach for multistage robust optimization. Automatica 48(3), 459–471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Welsh, J., Kong, H.: Robust experiment design through randomisation with chance constraints. In: Proceedings of the 18th IFAC World Congress. Milan, Italy (2011)

  52. Welsh, J., Rojas, C.: A scenario based approach to robust experiment design. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo, France (2009)

  53. Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., Lygeros, J.: On the sample size of random convex programs with structured dependence on the uncertainty. Automatica 60, 182–188 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zymler, S., Kuhn, D., Rustem, B.: Distributionally robust joint chance constraints with second-order moment information. Math. Program. 137(1–2), 167–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Campi.

Appendices

Appendix 1: The guarantee valid in dimension 1 is unattainable when 1 support constraint is seen in dimension 2

Consider the optimization problem illustrated in Fig. 9 where the probabilistic mass of the V-shaped constraints is p and that of the U-shaped constraints is \(1-p\). For a given \(\epsilon (1) < p\), the event \(\left\{ V(x^*_N) > \epsilon (1) \; \wedge \; s^*_N = 1 \right\} \) is met when all N constraints are U-shaped or when only 1 constraint is V-shaped. This event has probability \((1-p)^N + Np(1-p)^{N-1}\). The \(\sup \) of this probability over the p values that satisfy \(p > \epsilon (1)\) is \((1-\epsilon (1))^N + N\epsilon (1)(1-\epsilon (1))^{N-1}\). According to (3), this is the probability that \(V(x^*_N) > \epsilon (1)\) in a fully-supported problem in dimension 2. This probability is bigger than the probability \((1-\epsilon (1))^N\), let us call it \(\beta \), of \(V(x^*_N) > \epsilon (1)\) in a fully-supported problem in dimension 1. Hence, for the problem in dimension 2 given in Fig. 9 one has to increase \(\epsilon (1)\) to the value \(\epsilon '(1)\) such that \((1-\epsilon '(1))^N + N\epsilon '(1)(1-\epsilon '(1))^{N-1} = \beta \) to obtain that the probability of the event \(\left\{ V(x^*_N) > \epsilon '(1) \; \wedge \; s^*_N = 1 \right\} \) is bounded by \(\beta \).

Next we show that this example constitutes a counterexample to the validity of Eq. (7). To see this, take a generic \(\epsilon (1)\) and \(\epsilon (0) = \epsilon (2) = 1\). The right-hand side of (7) becomes \((1-\epsilon (1))^N\), which is smaller than

$$\begin{aligned}&{(1-\epsilon (1))^N + N\epsilon (1)(1-\epsilon (1))^{N-1}} \\&\quad = \sup _{p} \mathbb P^N \left\{ V(x^*_N)> \epsilon (1) \; \wedge \; s^*_N=1\right\} \\&\quad = \sup _{p} \left[ \mathbb P^N \left\{ V(x^*_N)> 1 \; \wedge \; s^*_N=0 \right\} \right. \\&\qquad \left. + \mathbb P^N \left\{ V(x^*_N)> \epsilon (1) \; \wedge \; s^*_N=1\right\} + \mathbb P^N \left\{ V(x^*_N)> 1 \; \wedge \; s^*_N=2 \right\} \right] \\&\quad = \sup _{p} \mathbb P^N \left\{ V(x^*_N) > \epsilon (s^*_N) \right\} . \end{aligned}$$

Since \(\mathbb P^N \left\{ V(x^*_N) > \epsilon (s^*_N) \right\} \) is the left-hand side of (7), this contradicts (7).

Appendix 2: MATLAB code

The following MATLAB code returns \(\epsilon (k) , k=0,1,\dots ,d\), for user assigned dN, and \(\beta \).

figure a

Appendix 3: Examples of solutions of Eq. (18)

1.1 Fully-supported problems

One can easily verify that the following \(F_k\)’s satisfy Eq. (18):

$$\begin{aligned} F_k(v)= & {} \left\{ \begin{array}{ll} 0, &{} \ \ \ v < 1 \\ 1, &{} \ \ \ v \ge 1 \end{array} \right. , \quad k=0,1,\ldots ,d-1, \end{aligned}$$
(40)
$$\begin{aligned} F_d(v)= & {} \left\{ \begin{array}{ll} 0, &{} \ \ \ v < 0 \\ v^d, &{} \ \ \ 0\le v \le 1 \\ 1, &{} \ \ \ v > 1. \end{array} \right. \end{aligned}$$
(41)

These are the \(F_k\)’s of fully-supported problems. The fact that for fully-supported problems \(F_d(v)\) is as in (41) is proven in [12]. To show instead the validity of (40), argue as follows. For \(0 \le k < d\), relation

$$\begin{aligned} V(x^*_k) = 1 \end{aligned}$$
(42)

holds with probability one since, otherwise, complementing the set of k constraints with \(d-k+1\) other constraints that are satisfied by \(x^*_k\), which would be an event with nonzero probability, leads to a total set of \(d+1\) constraints among which fewer than d are of support, so contradicting the fully-supportedness assumption. Thus, the measures corresponding to \(F_k , k=0,1,\ldots ,d-1\), concentrate in 1. Further, (40) claims that the mass in 1 is equal to 1, which corresponds to say that the number of support constraints is equal to k with probability one. For \(k = 0\) this is obvious. For \(0< k < d\), this is also true because, if less than k constraints were of support, then at least one of the constraints would be satisfied by the solution generated when only the other constraints are in place, a fact that happens with probability zero since the violation of the solution generated when only the other constraints are in place is equal to 1 as shown in (42).

1.2 Two examples of problems in dimension \(d=2\)

Consider the problem

$$\begin{aligned}&\min _{x_1 \ge 0, x_2 \ge 0} x_2 \\&\text {subject to: } |x_1 - \delta | \le x_2, \end{aligned}$$

where \(\delta \) is uniform in [0, 1]. As it can be easily verified, this problem is fully-supported so that, according to (40),(41), its \(F_k\)’s are

$$\begin{aligned} F_0(v) = F_1(v) = \left\{ \begin{array}{ll} 0, &{} \ \ \ v< 1 \\ 1, &{} \ \ \ v \ge 1 \end{array} \right. , \quad F_2(v) = \left\{ \begin{array}{ll} 0, &{} \ \ \ v < 0 \\ v^2, &{} \ \ \ 0 \le v \le 1 \\ 1, &{} \ \ \ v > 1 \end{array} \right. . \end{aligned}$$

Consider instead problem

$$\begin{aligned}&\min _{x_1 \ge 0, x_2 \ge 0} x_1+x_2 \\&\text {subject to: } x_{\delta _1} \ge \delta _2, \end{aligned}$$

where \(\delta _1\) takes value 1 or 2 with probability 0.5 each, and \(\delta _2\) is independent of \(\delta _1\) and is uniformly distributed on [0, 1]. This problem is not fully-supported and a simple calculation shows that

$$\begin{aligned}&F_0(v) = \left\{ \begin{array}{ll} 0, &{} \ \ \ v< 1 \\ 1, &{} \ \ \ v \ge 1 \end{array} \right. , \quad F_1(v) = \left\{ \begin{array}{ll} 0, &{} \ \ \ v< 0.5 \\ 2v-1, &{} \ \ \ 0.5 \le v \le 1 \\ 1, &{} \ \ \ v> 1 \\ \end{array} \right. ,\\&\quad F_2(v) = \left\{ \begin{array}{ll} 0, &{} \ \ \ v < 0 \\ 0.5v^2, &{} \ \ \ 0 \le v \le 1 \\ 0.5, &{} \ \ \ v > 1 \end{array} \right. . \end{aligned}$$

These \(F_k\)’s are another solution of Eq. (18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campi, M.C., Garatti, S. Wait-and-judge scenario optimization. Math. Program. 167, 155–189 (2018). https://doi.org/10.1007/s10107-016-1056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-016-1056-9

Keywords

Mathematics Subject Classification

Navigation