Application of MXenes in Water Purification, CO2 Capture and Conversion

  • Chapter
  • First Online:
Two-Dimensional Materials for Environmental Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 332))

  • 422 Accesses

Abstract

The number of nanomaterials that are suitable for many applications has increased with the 2011 discovery of two-dimensional (2D) transition metal carbides as well as nitrides (MXenes). MXenes are a new class of 2D materials that are quickly gaining popularity for various uses in the fields of medicine, chemistry, and the environment. MXenes but also MXene-composites or hybrids have several desirable properties, including a large surface area, outstanding chemical stability, hydrophilicity, excellent thermal conductivity, and environmental compatibility. MXenes have therefore been utilized in the creation of lithium-ion batteries, semiconductors, and hydrogen storage. The remediation of contaminated groundwater, surface waters, industrial and municipal wastewaters, as well as the capture and conversion of hydrogen, are just a few of the environmental applications where MXenes have recently been used. These applications frequently outperform those for traditional materials. MXene-composites can deionize via Faradaic capacitive deionization (CDI) as well as adsorb a range of organic and inorganic contaminants when employed for electrochemical applications. The applications of MXenes as well as its composites/hybrids for water treatment and CO2 capture and conversion, are conversed in this chapter as per the literature. We have also discussed the challenges with regard to the utilization of Mxene and its materials in wastewater remediation, along with drawn conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Naguib et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23(37), 4248–4253 (2011)

    Article  Google Scholar 

  2. M. Boota et al., Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chem. Mater. 29(7), 2731–2738 (2017)

    Article  Google Scholar 

  3. R.M. Ronchi, J.T. Arantes, S.F. Santos, Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram. Int. 45(15), 18167–18188 (2019)

    Article  Google Scholar 

  4. S.K. Hwang et al., MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 397, 125428 (2020)

    Article  Google Scholar 

  5. J. Jang et al., Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environ. Res. 182, 108990 (2020)

    Article  Google Scholar 

  6. Y.A. Al-Hamadani, et al., Applications of MXene-based membranes in water purification: a review. Chemosphere 254, 126821 (2020)

    Google Scholar 

  7. G.J. Adekoya, et al., Applications of MXene-Containing Polypyrrole Nanocomposites in Electrochemical Energy Storage and Conversion (ACS Omega, 2022)

    Google Scholar 

  8. F. Dixit et al., Application of MXenes for water treatment and energy-efficient desalination: a review. J. Hazard. Mater. 423, 127050 (2022)

    Article  Google Scholar 

  9. J. Chen et al., Synthesis of MXene and its application for zinc-ion storage. SusMat 2(3), 293–318 (2022)

    Article  MathSciNet  Google Scholar 

  10. A. Lipatov et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)

    Article  Google Scholar 

  11. J. Halim et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26(7), 2374–2381 (2014)

    Article  Google Scholar 

  12. Y. Guo et al., Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceram. Int. 46(11), 19550–19556 (2020)

    Article  Google Scholar 

  13. Y. Gogotsi, Transition metal carbides go 2D. Nat. Mater. 14(11), 1079–1080 (2015)

    Article  Google Scholar 

  14. P. Urbankowski et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8(22), 11385–11391 (2016)

    Article  Google Scholar 

  15. S. Yang et al., Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 130(47), 15717–15721 (2018)

    Article  Google Scholar 

  16. V. Natu et al., 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6(3), 616–630 (2020)

    Article  Google Scholar 

  17. B. Unnikrishnan et al., Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. J. Colloid Interface Sci. 628, 849–857 (2022)

    Article  Google Scholar 

  18. Z. Sun et al., Selective lithiation–expansion–microexplosion synthesis of two-dimensional fluoride-free Mxene. ACS Mater. Lett. 1(6), 628–632 (2019)

    Article  Google Scholar 

  19. Z. Li et al., Impacts of oxygen vacancies on zinc ion intercalation in VO2. ACS Nano 14(5), 5581–5589 (2020)

    Article  Google Scholar 

  20. C. Xu et al., Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14(11), 1135–1141 (2015)

    Article  Google Scholar 

  21. D. Geng et al., Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 29(35), 1700072 (2017)

    Article  Google Scholar 

  22. V. Thirumal et al., Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere 286, 131733 (2022)

    Article  Google Scholar 

  23. F. Turker et al., CVD synthesis and characterization of thin Mo2C crystals. J. Am. Ceram. Soc. 103(10), 5586–5593 (2020)

    Article  Google Scholar 

  24. A. Zaman et al., Biopolymer-based nanocomposites for removal of hazardous dyes from water bodies, in Innovations in Environmental Biotechnology. ed. by S. Arora et al. (Springer Nature Singapore, Singapore, 2022), pp.759–783

    Chapter  Google Scholar 

  25. J.T. Orasugh, S.S. Ray, Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment, in Functional Polymer Nanocomposites for Wastewater Treatment, ed. by M.J. Hato, S. Sinha Ray (Springer International Publishing, Cham, 2022), pp. 1–53

    Google Scholar 

  26. A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)

    Article  Google Scholar 

  27. Y. Ying et al., Two-dimensional titanium carbide for efficiently reductive removal of highly toxic Chromium(VI) from water. ACS Appl. Mater. Interfaces. 7(3), 1795–1803 (2015)

    Article  Google Scholar 

  28. G. Zou et al., Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J. Mater. Chem. A 4(2), 489–499 (2016)

    Article  MathSciNet  Google Scholar 

  29. A. Shahzad et al., Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environ. Res. 182, 109005 (2020)

    Article  Google Scholar 

  30. A. Shahzad et al., Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 5(12), 11481–11488 (2017)

    Article  Google Scholar 

  31. P. Karthikeyan et al., Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 47(1), 732–739 (2021)

    Article  Google Scholar 

  32. Z. He et al., Ca2+ induced 3D porous MXene gel for continuous removal of phosphate and uranium. Appl. Surf. Sci. 570, 150804 (2021)

    Article  Google Scholar 

  33. O. Mashtalir et al., Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A 2(35), 14334–14338 (2014)

    Article  Google Scholar 

  34. A. Shahzad et al., Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J. Hazard. Mater. 344, 811–818 (2018)

    Article  Google Scholar 

  35. L. Wang et al., Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. 53(89), 12084–12087 (2017)

    Article  Google Scholar 

  36. B.-M. Jun et al., Adsorption of selected dyes on Ti3C2Tx MXene and Al-based metal-organic framework. Ceram. Int. 46(3), 2960–2968 (2020)

    Article  Google Scholar 

  37. P. Karthikeyan et al., Effective removal of Cr (VI) and methyl orange from the aqueous environment using two-dimensional (2D) Ti3C2Tx MXene nanosheets. Ceram. Int. 47(3), 3692–3698 (2021)

    Article  Google Scholar 

  38. S. Kim et al., Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2Tx MXene. Chem. Eng. J. 406, 126789 (2021)

    Article  Google Scholar 

  39. A.A. Ghani et al., Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 421, 127780 (2021)

    Article  Google Scholar 

  40. S. Kim et al., Effect of single and multilayered Ti3C2Tx MXene as a catalyst and adsorbent on enhanced sonodegradation of diclofenac and verapamil. J. Hazard. Mater. 426, 128120 (2022)

    Article  Google Scholar 

  41. C. Peng et al., Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8(9), 6051–6060 (2016)

    Article  Google Scholar 

  42. J. Qu et al., Preparation and regulation of two-dimensional Ti3C2Tx MXene for enhanced adsorption–photocatalytic degradation of organic dyes in wastewater. Ceram. Int. 48(10), 14451–14459 (2022)

    Article  MathSciNet  Google Scholar 

  43. B.-M. Jun et al., Ultrasonic degradation of selected dyes using Ti3C2Tx MXene as a sonocatalyst. Ultrason. Sonochem. 64, 104993 (2020)

    Article  Google Scholar 

  44. M. Jeon et al., Sonodegradation of amitriptyline and ibuprofen in the presence of Ti3C2Tx MXene. J. Hazard. Mater. Lett. 2, 100028 (2021)

    Article  Google Scholar 

  45. A. Shahzad et al., Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018)

    Article  Google Scholar 

  46. H. Wang et al., Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemsuschem 9(12), 1490–1497 (2016)

    Article  Google Scholar 

  47. Q. Zhang et al., Defect-engineered MXene monolith enabling interfacial photothermal catalysis for high-yield solar hydrogen generation. Cell Rep. Phys. Sci. 3(5), 100877 (2022)

    Article  MathSciNet  Google Scholar 

  48. X. Chen et al., Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J. Colloid Interface Sci. 613, 644–651 (2022)

    Article  Google Scholar 

  49. Y. Wang et al., Ti3C2 MXene coupled with CdS nanoflowers as 2D/3D heterostructures for enhanced photocatalytic hydrogen production activity. Int. J. Hydrog. Energy 47(52), 22045–22053 (2022)

    Article  Google Scholar 

  50. B. Sun et al., The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 406, 127177 (2021)

    Article  Google Scholar 

  51. J. Ran et al., Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8(1), 1–10 (2017)

    Article  Google Scholar 

  52. B.-M. Jun et al., Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manag. 256, 109940 (2020)

    Article  Google Scholar 

  53. B.-M. Jun et al., Effective removal of Pb (ii) from synthetic wastewater using Ti3C2Tx MXene. Environ. Sci. Water Res. Technol. 6(1), 173–180 (2020)

    Article  Google Scholar 

  54. Z. Othman, H.R. Mackey, K.A. Mahmoud, A critical overview of MXenes adsorption behavior toward heavy metals. Chemosphere 295, 133849 (2022)

    Article  Google Scholar 

  55. Q. Peng et al., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc. 136(11), 4113–4116 (2014)

    Article  Google Scholar 

  56. A. Shahzad et al., Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions. Chem. Eng. J. 368, 400–408 (2019)

    Article  Google Scholar 

  57. C.E. Ren et al., Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6(20), 4026–4031 (2015)

    Article  Google Scholar 

  58. J. Guo et al., Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J. Phys. Chem. C 119(36), 20923–20930 (2015)

    Article  Google Scholar 

  59. X. Guo et al., High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation. Phys. Chem. Chem. Phys. 18(1), 228–233 (2016)

    Article  Google Scholar 

  60. R.P. Pandey et al., Reductive sequestration of toxic bromate from drinking water using lamellar two-dimensional Ti3C2Tx (MXene). ACS Sustain. Chem. Eng. 6(6), 7910–7917 (2018)

    Article  Google Scholar 

  61. Q. Zhang et al., Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites. Nanoscale 8(13), 7085–7093 (2016)

    Article  Google Scholar 

  62. D. Gan et al., Bioinspired functionalization of MXenes (Ti3C2Tx) with amino acids for efficient removal of heavy metal ions. Appl. Surf. Sci. 504, 144603 (2020)

    Article  Google Scholar 

  63. S. Wang et al., Facile preparation of biosurfactant-functionalized Ti2CTX MXene nanosheets with an enhanced adsorption performance for Pb (II) ions. J. Mol. Liq. 297, 111810 (2020)

    Article  Google Scholar 

  64. Z. Wei et al., Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Mater. Chem. Phys. 206, 270–276 (2018)

    Article  Google Scholar 

  65. Z. Zhu et al., Effect of temperature on methylene blue removal with novel 2D-Magnetism titanium carbide. J. Solid State Chem. 280, 120989 (2019)

    Article  Google Scholar 

  66. Y. Cui et al., A novel one-step strategy for preparation of Fe3O4-loaded Ti3C2 MXenes with high efficiency for removal organic dyes. Ceram. Int. 46(8), 11593–11601 (2020)

    Article  MathSciNet  Google Scholar 

  67. B.-M. Jun et al., Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: removal performance and mechanism analyses via dynamic light scattering. Chemosphere 254, 126827 (2020)

    Article  Google Scholar 

  68. Y. Lei et al., Facile preparation of sulfonic groups functionalized Mxenes for efficient removal of methylene blue. Ceram. Int. 45(14), 17653–17661 (2019)

    Article  Google Scholar 

  69. Y. Gao et al., Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015)

    Article  Google Scholar 

  70. N.-N. Wang et al., Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces 11(43), 40512–40523 (2019)

    Article  Google Scholar 

  71. Z.-K. Li et al., Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. J. Membr. Sci. 592, 117361 (2019)

    Article  Google Scholar 

  72. J. Saththasivam et al., A flexible Ti3C2Tx (MXene)/paper membrane for efficient oil/water separation. RSC Adv. 9(29), 16296–16304 (2019)

    Article  Google Scholar 

  73. H. Zhang et al., Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J. Colloid Interface Sci. 561, 861–869 (2020)

    Article  Google Scholar 

  74. S. He et al., Chemically stable two-dimensional MXene@UIO-66-(COOH)2 composite lamellar membrane for multi-component pollutant-oil-water emulsion separation. Compos. B Eng. 197, 108188 (2020)

    Article  Google Scholar 

  75. A. Moghaddasi et al., Separation of water/oil emulsions by an electrospun copolyamide mat covered with a 2D Ti3C2Tx MXene. Materials 13(14), 3171 (2020)

    Article  Google Scholar 

  76. S. Luo et al., Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega 4(2), 3946–3953 (2019)

    Article  Google Scholar 

  77. K. Li et al., Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf. A Phys. Chem. Eng. Asp. 553, 105–113 (2018)

    Article  Google Scholar 

  78. A. Sarycheva et al., Two-dimensional titanium carbide (MXene) as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 121(36), 19983–19988 (2017)

    Article  Google Scholar 

  79. H. Zhang et al., Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. J. Mater. Chem. A 4(33), 12913–12920 (2016)

    Article  Google Scholar 

  80. K. **ong et al., Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci. Rep. 7(1), 1–8 (2017)

    Article  Google Scholar 

  81. R. Li et al., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11(4), 3752–3759 (2017)

    Article  Google Scholar 

  82. X. Zhong et al., The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ions from aqueous solution. Environ. Sci. Nano 7(11), 3303–3317 (2020)

    Article  Google Scholar 

  83. S. Li et al., Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu (III) in water. J. Environ. Sci. 96, 127–137 (2020)

    Article  Google Scholar 

  84. X. Zhong et al., The magnetic covalent organic framework as a platform for high-performance extraction of Cr (VI) and bisphenol a from aqueous solution. J. Hazard. Mater. 393, 122353 (2020)

    Article  Google Scholar 

  85. Y.-J. Zhang et al., Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene. Appl. Surf. Sci. 426, 572–578 (2017)

    Article  Google Scholar 

  86. L. Wang et al., Porous carbon-supported gold nanoparticles for oxygen reduction reaction: effects of nanoparticle size. ACS Appl. Mater. Interfaces 8(32), 20635–20641 (2016)

    Article  Google Scholar 

  87. B. Anasori et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)

    Article  Google Scholar 

  88. X. Zhong et al., Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4 ions immobilization from aqueous solution. J. Hazard. Mater. 407, 124729 (2021)

    Article  Google Scholar 

  89. W. Mu et al., Removal of radioactive palladium based on novel 2D titanium carbides. Chem. Eng. J. 358, 283–290 (2019)

    Article  Google Scholar 

  90. B.-M. Jun et al., Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater. Nucl. Eng. Technol. 52(6), 1201–1207 (2020)

    Article  Google Scholar 

  91. M. ul Hassan, et al., Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix. J. Nucl. Mater. 543, 152566 (2021)

    Google Scholar 

  92. L. Wang et al., Effective removal of anionic Re (VII) by surface-modified Ti2CTx MXene nanocomposites: implications for Tc (VII) sequestration. Environ. Sci. Technol. 53(7), 3739–3747 (2019)

    Article  Google Scholar 

  93. P. Zhang et al., Effective removal of U (VI) and Eu (III) by carboxyl functionalized MXene nanosheets. J. Hazard. Mater. 396, 122731 (2020)

    Article  Google Scholar 

  94. L. Wang et al., Efficient U (VI) reduction and sequestration by Ti2CTx MXene. Environ. Sci. Technol. 52(18), 10748–10756 (2018)

    Article  Google Scholar 

  95. S. Wang et al., Highly efficient adsorption and immobilization of U (VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J. Hazard. Mater. 408, 124949 (2021)

    Article  Google Scholar 

  96. P. Zhang et al., Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 12(13), 15579–15587 (2020)

    Article  Google Scholar 

  97. L. Wang et al., Layered structure-based materials: challenges and opportunities for radionuclide sequestration. Environ. Sci. Nano 7(3), 724–752 (2020)

    Article  Google Scholar 

  98. L. Ding et al., Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3(4), 296–302 (2020)

    Article  Google Scholar 

  99. I.A. Vasyukova, et al., Synthesis, toxicity assessment, environmental and biomedical applications of MXenes: a review. Nanomaterials 12 (2022). https://doi.org/10.3390/nano12111797

  100. H. Zhou et al., Water permeability in MXene membranes: process matters. Chin. Chem. Lett. 31(6), 1665–1669 (2020)

    Article  Google Scholar 

  101. S. Jiang et al., Synthesis of polyurea from 1, 6-hexanediamine with CO2 through a two-step polymerization. Green Energy Environ. 2(4), 370–376 (2017)

    Article  Google Scholar 

  102. Y. Chen, et al., CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ. (2020)

    Google Scholar 

  103. M. He, Y. Sun, B. Han, Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem. Int. Ed. 52(37), 9620–9633 (2013)

    Article  Google Scholar 

  104. D. Voiry et al., Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem. 2(1), 1–17 (2018)

    Article  Google Scholar 

  105. L. Zhang et al., Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide. Chem. Soc. Rev. 47(14), 5423–5443 (2018)

    Article  Google Scholar 

  106. C. Yoo, Y.-E. Kim, Y. Lee, Selective transformation of CO2 to CO at a single nickel center. Acc. Chem. Res. 51(5), 1144–1152 (2018)

    Article  Google Scholar 

  107. D.M. Weekes et al., Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51(4), 910–918 (2018)

    Article  Google Scholar 

  108. C. Giordano et al., Metal nitride and metal carbide nanoparticles by a soft urea pathway. Chem. Mater. 21(21), 5136–5144 (2009)

    Article  Google Scholar 

  109. Á. Morales-García et al., CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)

    Article  Google Scholar 

  110. B. Wang et al., Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceram. 7(3), 237–245 (2018)

    Article  MathSciNet  Google Scholar 

  111. S. ** et al., Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)

    Article  Google Scholar 

  112. K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57(4), 603–619 (1985)

    Article  Google Scholar 

  113. M. Kruk et al., Characterization of MCM-48 silicas with tailored pore sizes synthesized via a highly efficient procedure. Chem. Mater. 12(5), 1414–1421 (2000)

    Article  Google Scholar 

  114. M. Park, S. Komarneni, Stepwise functionalization of mesoporous crystalline silica materials. Microporous Mesoporous Mater. 25(1–3), 75–80 (1998)

    Article  Google Scholar 

  115. A. Kurlov et al., Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane. Nat. Commun. 11(1), 1–11 (2020)

    Article  Google Scholar 

  116. M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2001)

    Article  Google Scholar 

  117. A.A. Shamsabadi et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene Nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2019)

    Article  Google Scholar 

  118. M.S. Boutilier et al., Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation. ACS Nano 8(1), 841–849 (2014)

    Article  Google Scholar 

  119. S.J. Kim et al., Metallic Ti3C2T x MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018)

    Article  Google Scholar 

  120. L. Ding et al., MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9(1), 1–7 (2018)

    Article  MathSciNet  Google Scholar 

  121. A. Ali Khan, M. Tahir, Construction of an S-Scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light. Ind. Eng. Chem. Res. 60(45), 16201–16223 (2021)

    Google Scholar 

  122. Y. Chen, E.A. Silva, Smart transport: a comparative analysis using the most used indicators in the literature juxtaposed with interventions in English metropolitan areas. Transp. Res. Interdiscip. Perspect. 10, 100371 (2021)

    Google Scholar 

  123. H. Wang, Q. Tang, Z. Wu, Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 9(25), 8425–8434 (2021)

    Article  Google Scholar 

  124. A. Pan et al., CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J. Phys. Chem. Lett. 10(21), 6590–6597 (2019)

    Article  Google Scholar 

  125. M. Que et al., Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl. Mater. Interfaces 13(5), 6180–6187 (2021)

    Article  Google Scholar 

  126. X. Sang et al., Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10(10), 9193–9200 (2016)

    Article  Google Scholar 

  127. W. Cui et al., Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32(1), 339–344 (2021)

    Article  Google Scholar 

  128. V. Parey et al., High-throughput screening of atomic defects in MXenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces 13(30), 35585–35594 (2021)

    Article  Google Scholar 

  129. R. Khaledialidusti, A.K. Mishra, A. Barnoush, Atomic defects in monolayer ordered double transition metal carbide (Mo2TiC2Tx) MXene and CO2 adsorption. J. Mater. Chem. C 8(14), 4771–4779 (2020)

    Article  Google Scholar 

  130. Q. Wang et al., Recent progress in thermal conversion of CO2 via single-atom site catalysis. Small Struct. 3(9), 2200059 (2022)

    Article  Google Scholar 

  131. J. Jones et al., Thermally stable single-atom platinum-on-ceria catalysts via atom trap**. Science 353(6295), 150–154 (2016)

    Article  Google Scholar 

  132. D. Zhao et al., MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 141(9), 4086–4093 (2019)

    Article  Google Scholar 

  133. N. Li et al., Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano 11(11), 10825–10833 (2017)

    Article  Google Scholar 

  134. A.D. Handoko et al., Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. J. Mater. Chem. A 6(44), 21885–21890 (2018)

    Article  Google Scholar 

  135. D. Yang et al., Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  136. Q. Zhu et al., Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. 128(31), 9158–9162 (2016)

    Article  Google Scholar 

  137. Q. Zhu et al., Hollow metal–organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew. Chem. 132(23), 8981–8986 (2020)

    Article  Google Scholar 

  138. A.D. Handoko et al., Two-dimensional titanium and molybdenum carbide MXenes as electrocatalysts for CO2 reduction. Iscience 23(6), 101181 (2020)

    Article  Google Scholar 

  139. K. Kannan et al., Fabrication of ZnO-Fe-MXene based nanocomposites for efficient CO2 reduction. Catalysts 10(5), 549 (2020)

    Article  Google Scholar 

  140. D. Qu et al., Nitrogen do** and titanium vacancies synergistically promote CO2 fixation in seawater. Nanoscale 12(33), 17191–17195 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa, and DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Tersur Orasugh .

Editor information

Editors and Affiliations

Ethics declarations

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orasugh, J.T., Temane, L., Ray, S.S. (2023). Application of MXenes in Water Purification, CO2 Capture and Conversion. In: Kumar, N., Gusain, R., Sinha Ray, S. (eds) Two-Dimensional Materials for Environmental Applications. Springer Series in Materials Science, vol 332. Springer, Cham. https://doi.org/10.1007/978-3-031-28756-5_2

Download citation

Publish with us

Policies and ethics

Navigation