Log in

Holistic Mechanism of Nanomaterials for Removal of Cd2+ from the Wastewater

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The availability of toxic pollutants in the water is a primary obstacle to utilizing the water for drinking purposes. So, scientists are making efforts to develop cutting-edge, affordable, renewable, and environmentally friendly methods for wastewater treatment to address the water shortage challenges and protect human health from serious diseases. Many wastewater treatment techniques have been developed for water treatment, including adsorption, ion exchange, membrane separation, co-precipitation oxidation, and biochemical processes. In all these water treatment techniques, adsorption is one of the strong candidates to eliminate the Cd2+ from water because of its economic feasibility and short route. The pristine nanomaterials possessed poorer adsorption capacity than their composites. The Cd2+ adsorption capacity is in the decreasing order of the graphene oxides (GO), MXenes, multi-walled carbon nanotubes (MWCNTs), and layered double hydroxides (LDHs). This  indicates that the GO is the most suitable choice for Cd2+ adsorption. In the current review, the authors discussed the performance of the MXene, graphene, GO, LDHs, and carbon nanotube (CNT)-based adsorbents. This study provides with a comparative analysis of the properties of all mentioned nanomaterials. A brief introduction of the synthesizing routes and the impact of various factors on the performance of nanomaterials have been discussed. Finally, the prospects and future challenges associated with the nanomaterials have been highlighted. In a nutshell, the porous nature, high inter-layer space, and significant specific surface area (SSA) of GO makes them an ideal candidate for the adsorption of Cd2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

N/A.

References

  • Abd-Elhamid, A., Elgoud, E. A., & Aly, H. (2023). Adsorption of palladium from chloride aqueous solution using silica alginate nanomaterial. International Journal of Biological Macromolecules, 253, 126754.

    Article  CAS  Google Scholar 

  • Abu-Nada, A., McKay, G., & Abdala, A. (2020). Recent advances in applications of hybrid graphene materials for metals removal from wastewater. Nanomaterials, 10, 595.

    Article  CAS  Google Scholar 

  • Ajmal, M., Siddiq, M., Aktas, N., & Sahiner, N. (2015). Magnetic Co–Fe bimetallic nanoparticle containing modifiable microgels for the removal of heavy metal ions, organic dyes and herbicides from aqueous media. RSC Advances, 5, 43873–43884.

    Article  CAS  Google Scholar 

  • Ali, I., Mbianda, X., Burakov, A., Galunin, E., Burakova, I., Mkrtchyan, E., Tkachev, A., & Grachev, V. (2019). Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 127, 160–180.

    Article  CAS  Google Scholar 

  • Alraddadi, S. (2022). Utilization of nano volcanic ash as a natural economical adsorbent for removing cadmium from wastewater. Heliyon, 8(12).

  • Bao, S., Yang, W., Wang, Y., Yu, Y., & Sun, Y. (2020). One-pot synthesis of magnetic graphene oxide composites as an efficient and recoverable adsorbent for Cd(II) and Pb(II) removal from aqueous solution. Journal of Hazardous Materials, 381, 120914.

    Article  CAS  Google Scholar 

  • Bashir, M., Batool, M., Arif, N., Tayyab, M., Zeng, Y.-J., & Zafar, M. N. (2023). Strontium-based nanomaterials for the removal of organic/inorganic contaminants from water: A review. Coordination Chemistry Reviews, 492, 215286.

    Article  CAS  Google Scholar 

  • Bilal, M., Khan, U., & Ihsanullah, I. (2023). MXenes: The emerging adsorbents for the removal of dyes from water. Journal of Molecular Liquids, 385, 122377.

    Article  CAS  Google Scholar 

  • Chai, J. B., Au, P. I., Mubarak, N. M., Khalid, M., Ng, W. P. Q., Jagadish, P., Walvekar, R., & Abdullah, E. C. (2020). Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay–based adsorbent. Environmental Science and Pollution Research, 27, 13949–13962.

    Article  CAS  Google Scholar 

  • Chang, Y. S., Au, P. I., Mubarak, N. M., Khalid, M., Jagadish, P., Walvekar, R., & Abdullah, E. C. (2020). Adsorption of Cu(II) and Ni(II) ions from wastewater onto bentonite and bentonite/GO composite. Environmental Science and Pollution Research, 27, 33270–33296.

    Article  CAS  Google Scholar 

  • Chen, S., Chen, Y., Xu, H., Lyu, M., Zhang, X., Han, Z., Liu, H., Yao, Y., Xu, C., & Sheng, J. (2023). Single-walled carbon nanotubes synthesized by laser ablation from coal for field-effect transistors. Materials Horizons, 10(11), 5185–5191.

  • Choong, G., Liu, Y., & Templeton, D. M. (2014). Interplay of calcium and cadmium in mediating cadmium toxicity. Chemico-Biological Interactions, 211, 54–65.

    Article  CAS  Google Scholar 

  • Daniel, S., & Thomas, S. (2020). Layered double hydroxides: Fundamentals to applications (pp. 1–76). Elsevier.

    Book  Google Scholar 

  • Egbosiuba, T. C., Egwunyenga, M. C., Tijani, J. O., Mustapha, S., Abdulkareem, A. S., Kovo, A. S., Krikstolaityte, V., Veksha, A., Wagner, M., & Lisak, G. (2022). Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. Journal of Hazardous Materials, 423, 126993.

    Article  CAS  Google Scholar 

  • Fu, J., Zhang, A., Wang, T., Qu, G., Shao, J., Yuan, B., Wang, Y., & Jiang, G. (2013). Influence of E-waste dismantling and its regulations: Temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk. Environmental Science & Technology, 47, 7437–7445.

    Article  CAS  Google Scholar 

  • Gautam, S., Agrawal, H., Thakur, M., Akbari, A., Sharda, H., Kaur, R., & Amini, M. (2020). Metal oxides and metal organic frameworks for the photocatalytic degradation: A review. Journal of Environmental Chemical Engineering, 8, 103726.

    Article  CAS  Google Scholar 

  • Ghaseminezhad, S. M., Barikani, M., & Salehirad, M. (2019). Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination. Composites Part B: Engineering, 161, 320–327.

    Article  CAS  Google Scholar 

  • Ghidiu, M., Halim, J., Kota, S., Bish, D., Gogotsi, Y., & Barsoum, M. W. (2016). Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chemistry of Materials, 28, 3507–3514.

    Article  CAS  Google Scholar 

  • Gomaa, M., & Fattah, G. A. (2016). Synthesis of graphene and graphene oxide by microwave plasma chemical vapor deposition. Journal of American Science, 12, 72–80.

    Google Scholar 

  • Gomes, B. F. M. L., de Araújo, C. M. B., do Nascimento, B. F., Freire, E. M. P. D. L., Da Motta Sobrinho, M. A., & Carvalho, M. N. (2022). Synthesis and application of graphene oxide as a nanoadsorbent to remove Cd (II) and Pb (II) from water: adsorption equilibrium, kinetics, and regeneration. Environmental Science and Pollution Research, 29, 17358–173722.

    Article  CAS  Google Scholar 

  • Gu, J., Dai, S., Liu, Y., Liu, H., Zhang, Y., Ji, X., Yu, F., Zhou, Y., Chen, L., Tse, W. K. F., Wong, C. K. C., Chen, B., & Shi, H. (2018). Activation of Ca2+-sensing receptor as a protective pathway to reduce cadmium-induced cytotoxicity in renal proximal tubular cells. Scientific Reports, 8, 1092.

    Article  Google Scholar 

  • Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1995). Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 243, 49–54.

    Article  CAS  Google Scholar 

  • Guo, T., Bulin, C., Ma, Z., Li, B., Zhang, Y., Zhang, B., **ng, R., & Ge, X. (2021). Mechanism of Cd(II) and Cu(II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent. ACS Omega, 6, 16535–16545.

    Article  CAS  Google Scholar 

  • Huang, Y., Liu, C., Qin, L., **e, M., Xu, Z., & Yu, Y. (2023). Efficient adsorption capacity of MgFe-layered double hydroxide loaded on pomelo peel biochar for Cd (II) from aqueous solutions: Adsorption behaviour and mechanism. Molecules, 28, 4538.

    Article  CAS  Google Scholar 

  • Huong, L. M., Thinh, D. B., Tu, T. H., Dat, N. M., Hong, T. T., Cam, P. T. N., Trinh, D. N., Nam, H. M., Phong, M. T., & Hieu, N. H. (2021). Ice segregation induced self-assembly of graphene oxide into graphene-based aerogel for enhanced adsorption of heavy metal ions and phenolic compounds in aqueous media. Surfaces and Interfaces, 26, 101309.

    Article  CAS  Google Scholar 

  • Hussain Solangi, N., Hussin, F., Anjum, A., Sabzoi, N., Ali Mazari, S., Mubarak, N. M., Kheireddine Aroua, M., Siddiqui, M. T. H., & Saeed Qureshi, S. (2023). A review of encapsulated ionic liquids for CO2 capture. Journal of Molecular Liquids, 374, 121266.

    Article  CAS  Google Scholar 

  • Ilyas, M., Younas, M., Shah, M. U. H., Rehman, W. U., Rehman, A. U., Yuan, Z.-H., Zheng, Y.-M., Sheikh, M., & Rezakazemi, M. (2023). MXene-based 2D Ti3C2Tx nanosheets for highly efficient cadmium (Cd2+) adsorption. Journal of Water Process Engineering, 55, 104131.

    Article  Google Scholar 

  • Imseng, M., Wiggenhauser, M., Keller, A., Müller, M., Rehkämper, M., Murphy, K., Kreissig, K., Frossard, E., Wilcke, W., & Bigalke, M. (2018). Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling. Environmental Science & Technology, 52, 1919–1928.

    Article  CAS  Google Scholar 

  • Jaafar, E., Kashif, M., Sahari, S. K., & Ngaini, Z. (2018). Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO) (pp. 112–116). Trans Tech Publ.

    Google Scholar 

  • Jatoi, A. S., Mubarak, N. M., Hashmi, Z., Solangi, N. H., Karri, R. R., Tan, Y. H., Mazari, S. A., Koduru, J. R., & Alfantazi, A. (2023). New insights into MXene applications for sustainable environmental remediation. Chemosphere, 313, 137497.

    Article  CAS  Google Scholar 

  • Jun, L. Y., Mubarak, N. M., Yon, L. S., Bing, C. H., Khalid, M., & Abdullah, E. C. (2018). Comparative study of acid functionization of carbon nanotube via ultrasonic and reflux mechanism. Journal of Environmental Chemical Engineering, 6, 5889–5896.

    Article  CAS  Google Scholar 

  • Karri, R. R., Solangi, N. H., Mubarak, N. M., Jatoi, A. S., Lingamdinne, L. P., Koduru, J. R., Dehghani, M. H., & Khan, N. A. (2024). Carbon nanotubes for sustainable renewable energy applications, in M. Hadi Dehghani, R. R. Karri, & N. M. Mubarak (Eds.), Water treatment using engineered carbon nanotubes (pp. 433–456). Elsevier

  • Kasraee, M., Dehghani, M. H., Hamidi, F., Mubarak, N. M., Karri, R. R., Rajamohan, N., & Solangi, N. H. (2023). Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Scientific Reports, 13, 13833.

    Article  CAS  Google Scholar 

  • Khan, M., Tahir, M. N., Adil, S. F., Khan, H. U., Siddiqui, M. R. H., Al-Warthan, A. A., & Tremel, W. (2015). Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. Journal of Materials Chemistry A, 3, 18753–18808.

    Article  CAS  Google Scholar 

  • Kong, Q., Shi, X., Ma, W., Zhang, F., Yu, T., Zhao, F., Zhao, D., & Wei, C. (2021). Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. Journal of Hazardous Materials, 415, 125690.

    Article  CAS  Google Scholar 

  • Kosiba, A. A., Wang, Y., Chen, D., Wong, C. K. C., Gu, J., & Shi, H. (2020). The roles of calcium-sensing receptor (CaSR) in heavy metals-induced nephrotoxicity. Life Sciences, 242, 117183.

    Article  CAS  Google Scholar 

  • Krishna, R. H., Chandraprabha, M., Samrat, K., Murthy, T. K., Manjunatha, C., & Kumar, S. G. (2023). Carbon nanotubes and graphene-based materials for adsorptive removal of metal ions–A review on surface functionalization and related adsorption mechanism. Applied Surface Science Advances, 16, 100431.

    Article  Google Scholar 

  • Kumanek, B., & Janas, D. (2019). Thermal conductivity of carbon nanotube networks: A review. Journal of Materials Science, 54, 7397–7427.

    Article  CAS  Google Scholar 

  • Kumar, U., & Yadav, B. (2018). State of art: An approach to the synthesis of pure and doped graphene. Advanced Science, Engineering and Medicine, 10, 638–644.

    Article  CAS  Google Scholar 

  • Lee, C. J., Kim, D. W., Lee, T. J., Choi, Y. C., Park, Y. S., Lee, Y. H., Choi, W. B., Lee, N. S., Park, G.-S., & Kim, J. M. (1999). Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chemical Physics Letters, 312, 461–468.

    Article  CAS  Google Scholar 

  • Li, J., Yuan, X., Lin, C., Yang, Y., Xu, L., Du, X., **e, J., Lin, J., & Sun, J. (2017). Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Advanced Energy Materials, 7, 1602725.

    Article  Google Scholar 

  • Li, H., Fagerberg, B., Sallsten, G., Borné, Y., Hedblad, B., Engström, G., Barregard, L., & Andersson, E. M. (2019). Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmö Diet and Cancer Cohort Study. Environmental Health, 18, 56.

    Article  Google Scholar 

  • Liao, W., Zhou, X., Cai, N., Chen, Z., Yang, H., Zhang, S., Zhang, X., & Chen, H. (2022). Simultaneous removal of cadmium, lead, chromate by biochar modified with layered double hydroxide with sulfide intercalation. Bioresource Technology, 360, 127630.

    Article  CAS  Google Scholar 

  • Lin, X., Gan, L., Owens, G., & Chen, Z. (2023a). Removal of cadmium from wastewater using biofunctional reduced graphene oxide synthesized by Lysinibacillus sphaericus. Journal of Cleaner Production, 383, 135369.

    Article  CAS  Google Scholar 

  • Lin, Y., Zhang, X., Wang, Y., Shi, E., Lin, H., & Chen, G. (2023b). Removal of Pb2+ and Cd2+ from irrigation water and replenishment of mineral nutrients using a low-cost mineral adsorbent derived from potassium-rich aluminum silicates. Journal of Environmental Chemical Engineering, 11, 109282.

    Article  CAS  Google Scholar 

  • Lingamdinne, L. P., Angaru, G. K. R., Pal, C. A., Koduru, J. R., Karri, R. R., Mubarak, N. M., & Chang, Y.-Y. (2024). Insights into kinetics, thermodynamics, and mechanisms of chemically activated sunflower stem biochar for removal of phenol and bisphenol-A from wastewater. Scientific Reports, 14, 4267.

    Article  CAS  Google Scholar 

  • Lipatov, A., Goad, A., Loes, M. J., Vorobeva, N. S., Abourahma, J., Gogotsi, Y., & Sinitskii, A. (2021). High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter, 4(4), 1413–1427.

  • Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., & Sinitskii, A. (2018). ‘Elastic properties of 2D Ti3C2T x MXene monolayers and bilayers’. Science advances, 4, eaat0491.

  • Liu, R., & Li, W. (2018). High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol)(PVA) composites. ACS Omega, 3(3), 2609–2617.

  • Liu, L., Zhang, J., Zhao, J., & Liu, F. (2012). Mechanical properties of graphene oxides. Nanoscale, 4(19), 5910–5916.

  • Liu, H., Liu, K., Fu, H., Ji, R., & Qu, X. (2020). Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase. Environmental Pollution, 263, 114484.

    Article  CAS  Google Scholar 

  • Liu, S., Liu, X., Zhang, X., Su, Y., Chen, X. E., Cai, S., Liao, D., Pan, N., Su, J., Chen, X., **ao, M., & Liu, Z. (2023). Exploring the potential of water-soluble squid ink melanin: Stability, free radical scavenging, and Cd2+ adsorption abilities. Foods, 12, 3963.

    Article  CAS  Google Scholar 

  • Ma, J., Qin, G., Zhang, Y., Sun, J., Wang, S., & Jiang, L. (2018). Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. Journal of Cleaner Production, 182, 776–782.

    Article  CAS  Google Scholar 

  • Mahmoudi, E., Azizkhani, S., Mohammad, A. W., Ng, L. Y., Benamor, A., Ang, W. L., & Ba-Abbad, M. (2020). Simultaneous removal of Congo red and cadmium (II) from aqueous solutions using graphene oxide–silica composite as a multifunctional adsorbent. Journal of Environmental Sciences, 98, 151–160.

    Article  CAS  Google Scholar 

  • Manea, Y. K., Khan, A. M., Wani, A. A., Saleh, M. A., Qashqoosh, M. T., Shahadat, M., & Rezakazemi, M. (2022). In-grown flower like Al-Li/Th-LDH@ CNT nanocomposite for enhanced photocatalytic degradation of MG dye and selective adsorption of Cr (VI). Journal of Environmental Chemical Engineering, 10, 106848.

    Article  CAS  Google Scholar 

  • Mateen, A., Ansari, M. Z., Hussain, I., Eldin, S. M., Albaqami, M. D., Bahajjaj, A. A. A., Javed, M. S., & Peng, K.-Q. (2023). Ti2CTx–MXene aerogel based ultra–stable Zn–ion supercapacitor. Composites Communications, 38, 101493.

  • Mazari, S. A., Ali, E., Abro, R., Khan, F. S. A., Ahmed, I., Ahmed, M., Nizamuddin, S., Siddiqui, T. H., Hossain, N., & Mubarak, N. M. (2021a). Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges–A review. Journal of Environmental Chemical Engineering, 9, 105028.

    Article  CAS  Google Scholar 

  • Mazari, S. A., Siyal, A. R., Solangi, N. H., Ahmed, S., Griffin, G., Abro, R., Mubarak, N. M., Ahmed, M., & Sabzoi, N. (2021b). Prediction of thermo-physical properties of 1-Butyl-3-methylimidazolium hexafluorophosphate for CO2 capture using machine learning models. Journal of Molecular Liquids, 327, 114785.

    Article  CAS  Google Scholar 

  • Mei, J., Ayoko, G. A., Hu, C., & Sun, Z. (2020). Thermal reduction of sulfur-containing MAX phase for MXene production. Chemical Engineering Journal, 395, 125111.

    Article  CAS  Google Scholar 

  • Mubarak, N. M., Sahu, J. N., Abdullah, E. C., & Jayakumar, N. S. (2016). Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique. Journal of Environmental Sciences (china), 45, 143–155.

    Article  CAS  Google Scholar 

  • Nasir, S., Hussein, M. Z., Yusof, N. A., & Zainal, Z. (2017). Oil palm waste-based precursors as a renewable and economical carbon sources for the preparation of reduced graphene oxide from graphene oxide. Nanomaterials, 7, 182.

    Article  Google Scholar 

  • Nemanich, R. J., Carlisle, J. A., Hirata, A., & Haenen, K. (2014). CVD diamond—Research, applications, and challenges. Mrs Bulletin, 39, 490–494.

    Article  CAS  Google Scholar 

  • Nizamuddin, S., Siddiqui, M. T. H., Mubarak, N. M., Baloch, H. A., Abdullah, E. C., Mazari, S. A., Griffin, G. J., Srinivasan, M. P., & Tanksale, A. (2019). Iron oxide nanomaterials for the removal of heavy metals and dyes from wastewater. Nanoscale Materials in Water Purification, S. Thomas, D. Pasquini, S.-Y. Leu, and D.A. Gopakumar, Editors (pp. 447–472). Elsevier

  • Ofudje, E. A., Sodiya, E. F., Olanrele, O. S., & Akinwunmi, F. (2023). Adsorption of Cd2+ onto apatite surface: Equilibrium, kinetics and thermodynamic studies. Heliyon, 9(2), e12971.

  • Ogunleye, D. T., Akpotu, S. O., & Moodley, B. (2023). Crystalline nanocellulose anchored on reduced graphene oxide for the removal of pharmaceuticals from aqueous systems: Adsorbent characterization and adsorption performance. ChemistrySelect, 8, e202202533.

    Article  CAS  Google Scholar 

  • Palanivelu, J., Thanigaivel, S., Vickram, S., Dey, N., Mihaylova, D., & Desseva, I. (2022). Probiotics in functional foods: Survival assessment and approaches for improved viability. Applied Sciences, 12(1), 455.

  • Park, W., Hu, J., Jauregui, L. A., Ruan, X., & Chen, Y. P. (2014). Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Applied Physics Letters, 104(11).

  • Pashai Gatabi, M., Milani Moghaddam, H., & Ghorbani, M. (2016). Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: Equilibrium, kinetic, and thermodynamic study. Journal of Nanoparticle Research, 18, 189.

    Article  Google Scholar 

  • Peng, Q., Guo, J., Zhang, Q., **ang, J., Liu, B., Zhou, A., Liu, R., & Tian, Y. (2014). Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 136, 4113–4116.

    Article  CAS  Google Scholar 

  • Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., & Kizek, R. (2011). Methods for carbon nanotubes synthesis. Journal of Materials Chemistry, 21, 15872–15884.

    Article  CAS  Google Scholar 

  • Putra, R. N., & Lee, Y. H. (2020). Entrapment of micro-sized zeolites in porous hydrogels: Strategy to overcome drawbacks of zeolite particles and beads for adsorption of ammonium ions. Separation and Purification Technology, 237, 116351.

    Article  CAS  Google Scholar 

  • Raheem, I., Mubarak, N. M., Karri, R. R., Solangi, N. H., Jatoi, A. S., Mazari, S. A., Khalid, M., Tan, Y. H., Koduru, J. R., & Malafaia, G. (2023). Rapid growth of MXene-based membranes for sustainable environmental pollution remediation. Chemosphere, 311, 137056.

    Article  CAS  Google Scholar 

  • Raizada, P., Sudhaik, A., & Singh, P. (2019). Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Materials Science for Energy Technologies, 2, 509–525.

    Article  Google Scholar 

  • Rajendran, S., Priya, A. K., Senthil Kumar, P., Hoang, T. K. A., Sekar, K., Chong, K. Y., Khoo, K. S., Ng, H. S., & Show, P. L. (2022). A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere, 303, 135146.

    Article  CAS  Google Scholar 

  • Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J., & D’Odorico, P. (2020). Global agricultural economic water scarcity. Science Advances, 6(18), eaaz6031.

  • Sajid, M., Asif, M., Baig, N., Kabeer, M., Ihsanullah, I., & Mohammad, A. W. (2022). Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 47, 102815.

    Article  Google Scholar 

  • Schaefer, H. R., Dennis, S., & Fitzpatrick, S. (2020). Cadmium: Mitigation strategies to reduce dietary exposure. Journal of Food Science, 85, 260–267.

    Article  CAS  Google Scholar 

  • Shah, K. A., & Tali, B. A. (2016). Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Materials Science in Semiconductor Processing, 41, 67–82.

    Article  CAS  Google Scholar 

  • Shahzad, A., Nawaz, M., Moztahida, M., Tahir, K., Kim, J., Lim, Y., Kim, B., Jang, J., & Lee, D. S. (2019). Exfoliation of titanium aluminum carbide (211 MAX phase) to form nanofibers and two-dimensional nanosheets and their application in aqueous-phase cadmium sequestration. ACS Applied Materials & Interfaces, 11, 19156–19166.

    Article  CAS  Google Scholar 

  • Sharma, H., Rawal, N., & Mathew, B. B. (2015). The characteristics, toxicity and effects of cadmium. International Journal of Nanotechnology and Nanoscience, 3(10), 1–9.

  • Shen, S., Yang, L., Wang, C., & Wei, L. (2020). Effect of CNT orientation on the mechanical property and fracture mechanism of vertically aligned carbon nanotube/carbon composites. Ceramics International, 46, 4933–4938.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Anjum, A., Tanjung, F. A., Mazari, S. A., & Mubarak, N. M. (2021a). A review of recent trends and emerging perspectives of ionic liquid membranes for CO2 separation. Journal of Environmental Chemical Engineering, 9, 105860.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Kumar, J., Mazari, S. A., Ahmed, S., Fatima, N., & Mubarak, N. M. (2021b). Development of fruit waste derived bio-adsorbents for wastewater treatment: A review. Journal of Hazardous Materials, 416, 125848.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Mubarak, N. M., Karri, R. R., Mazari, S. A., Jatoi, A. S., Koduru, J. R., & Dehghani, M. H. (2022). MXene-based phase change materials for solar thermal energy storage. Energy Conversion and Management, 273, 116432.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Karri, R. R., Mazari, S. A., Mubarak, N. M., Jatoi, A. S., Malafaia, G., & Azad, A. K. (2023a). MXene as emerging material for photocatalytic degradation of environmental pollutants. Coordination Chemistry Reviews, 477, 214965.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Karri, R. R., Mubarak, N. M., Mazari, S. A., & Azad, A. K. (2023b). Emerging 2D MXenes as next-generation materials for energy storage applications. Journal of Energy Storage, 70, 108004.

    Article  Google Scholar 

  • Solangi, N. H., Karri, R. R., Mubarak, N. M., Mazari, S. A., Jatoi, A. S., & Koduru, J. R. (2023c). Emerging 2D MXene -based adsorbents for hazardous pollutants removal. Desalination, 549, 116314.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Mazari, S. A., Mubarak, N. M., Karri, R. R., Rajamohan, N., & Vo, D.-V.N. (2023d). Recent trends in MXene-based material for biomedical applications. Environmental Research, 222, 115337.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Mubarak, N. M., Karri, R. R., Mazari, S. A., & Jatoi, A. S. (2023e). Advanced growth of 2D MXene for electrochemical sensors. Environmental Research, 222, 115279.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Mubarak, N. M., Karri, R. R., Mazari, S. A., Kailasa, S. K., & Alfantazi, A. (2023f). Applications of advanced MXene-based composite membranes for sustainable water desalination. Chemosphere, 314, 137643.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Mubarak, N. M., Karri, R. R., Mazari, S. A., & Koduru, J. R. (2023g). Holistic mechanism of graphene oxide and MXene-based membrane for the desalination processes. Desalination, 568, 117035.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Karri, R. R., Mubarak, N. M., & Mazari, S. A. (2024b). Mechanism of polymer composite-based nanomaterial for biomedical applications. Advanced Industrial and Engineering Polymer Research, 7, 1–19.

    Article  CAS  Google Scholar 

  • Solangi, N. H., Karri, R. R., Mubarak, N. M., Jatoi, A. S., Petra, R., Lim, S. A., Lingamdinne, L. P., & Koduru, J. R. (2024a). Applications of carbon nanotubes-based biosensors: A comprehensive review, in M. H. Dehghani, R. R. Karri, & N. M. Mubarak (Eds.), Water treatment using engineered carbon nanotubes (pp. 457–477). Elsevier

  • Šolić, M., Maletić, S., Isakovski, M. K., Nikić, J., Watson, M., Kónya, Z., & Rončević, S. (2021). Removing low levels of Cd (II) and Pb (II) by adsorption on two types of oxidized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 9, 105402.

    Article  Google Scholar 

  • Strankowski, M., Włodarczyk, D., Piszczyk, Ł., & Strankowska, J. (2016). Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. Journal of Spectroscopy, 2016.

  • Sui, Z., Zhou, D., & Han, B. (2016). Fabrication of graphene-based porous materials and their applications in environmental fields, graphene science handbook Appl. Applications and Industrialization, 399–418.

  • Sun, L., Gong, P., Sun, Y., Qin, Q., Song, K., Ye, J., Zhang, H., Zhou, B., & Xue, Y. (2022). Modified chicken manure biochar enhanced the adsorption for Cd2+ in aqueous and immobilization of Cd in contaminated agricultural soil. Science of the Total Environment, 851, 158252.

    Article  CAS  Google Scholar 

  • Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., & Cheng, J. (2015). Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 297, 251–260.

    Article  CAS  Google Scholar 

  • Thanigaivel, S., Vickram, S., Manikandan, S., Deena, S. R., Subbaiya, R., Karmegam, N., Govarthanan, M., & Kim, W. (2022). Sustainability and carbon neutralization trends in microalgae bioenergy production from wastewater treatment: A review. Bioresource Technology, 364, 128057.

    Article  CAS  Google Scholar 

  • Vickram, A. S., Srikumar, P. S., Srinivasan, S., Jeyanthi, P., Anbarasu, K., Thanigaivel, S., Nibedita, D., Jenila Rani, D., & Rohini, K. (2021). Seminal exosomes - An important biological marker for various disorders and syndrome in human reproduction. Saudi J Biol Sci, 28, 3607–3615.

    Article  CAS  Google Scholar 

  • Wang, T., Li, C., Wang, C., & Wang, H. (2018). Biochar/MnAl-LDH composites for Cu (ΙΙ) removal from aqueous solution. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 538, 443–450.

    Article  CAS  Google Scholar 

  • Wang, Y.-X., Liu, M.-J., Geng, X.-H., Zhang, Y., Jia, R.-Q., Zhang, Y.-N., Wang, X.-X., & Jiang, Y. (2022). The combined effects of microplastics and the heavy metal cadmium on the marine periphytic ciliate Euplotes vannus. Environmental Pollution, 308, 119663.

    Article  CAS  Google Scholar 

  • Wang, Y., & Weng, G. J. (2018). Electrical conductivity of carbon nanotube-and graphene-based nanocomposites. Micromechanics and nanomechanics of composite solids, 123–156.

  • Wei, P., Li, X., He, Z., Sun, X., Liang, Q., Wang, Z., Fang, C., Li, Q., Yang, H., Han, J., & Huang, Y. (2021). Porous N, B co-doped carbon nanotubes as efficient metal-free electrocatalysts for ORR and Zn-air batteries. Chemical Engineering Journal, 422, 130134.

    Article  CAS  Google Scholar 

  • Witkowska, D., Słowik, J., & Chilicka, K. (2021). Heavy metals and human health: Possible exposure pathways and the competition for protein binding sites. Molecules, 26, 6060.

    Article  CAS  Google Scholar 

  • Wu, L., Yue, W., Zheng, N., Guo, M., & Teng, Y. (2022). Assessing the impact of different salinities on the desorption of Cd, Cu and Zn in soils with combined pollution. Science of the Total Environment, 836, 155725.

    Article  CAS  Google Scholar 

  • Xu, J.-C., Ma, Q., Chen, C., Wu, Q.-T., & Long, X.-X. (2020). Cadmium adsorption behavior of porous and reduced graphene oxide and its potential for promoting cadmium migration during soil electrokinetic remediation. Chemosphere, 259, 127441.

    Article  CAS  Google Scholar 

  • Xue, Z., Liu, N., Hu, H., Huang, J., Kalkhajeh, Y. K., Wu, X., Xu, N., Fu, X., & Zhan, L. (2019). Adsorption of Cd (II) in water by mesoporous ceramic functional nanomaterials. Royal Society Open Science, 6, 182195.

    Article  CAS  Google Scholar 

  • Yang, Y., Cao, J., Wei, N., Meng, D., Wang, L., Ren, G., Yan, R., & Zhang, N. (2019). Thermal conductivity of defective graphene oxide: A molecular dynamic study. Molecules, 24, 1103.

    Article  CAS  Google Scholar 

  • Yao, L., Selmi, A., & Esmaeili, H. (2021). A review study on new aspects of biodemulsifiers: Production, features and their application in wastewater treatment. Chemosphere, 284, 131364.

    Article  CAS  Google Scholar 

  • Yari Moghaddam, N., Lorestani, B., Cheraghi, M., & Jamehbozorgi, S. (2019). Adsorption of Cd and Ni from water by graphene oxide and graphene oxide–almond shell composite. Water Environment Research, 91, 475–482.

    Article  CAS  Google Scholar 

  • Ye, Z., Xu, D., Zhong, J., Gao, S., Wang, J., Zhang, Y., Xu, H., Li, Y., & Li, W. (2024). Influence of soil colloids on the transport of Cd2+ and Pb2+ under different pH and ionic strength conditions. Agronomy, 14, 352.

    Article  CAS  Google Scholar 

  • Yee, M. J., Mubarak, N. M., Abdullah, E. C., Khalid, M., Walvekar, R., Karri, R. R., Nizamuddin, S., & Numan, A. (2019). Carbon nanomaterials based films for strain sensing application—A review. Nano-Structures and Nano-Objects, 18, 100312.

  • Yu, S., Tang, H., Zhang, D., Wang, S., Qiu, M., Song, G., Fu, D., Hu, B., & Wang, X. (2022). MXenes as emerging nanomaterials in water purification and environmental remediation. Science of the Total Environment, 811, 152280.

    Article  CAS  Google Scholar 

  • Zhang, Y., Peng, W., **a, L., & Song, S. (2017). Adsorption of Cd(II) at the Interface of water and graphene oxide prepared from flaky graphite and amorphous graphite. Journal of Environmental Chemical Engineering, 5, 4157–4164.

    Article  CAS  Google Scholar 

  • Zhang, Q., Hou, Q., Huang, G., & Fan, Q. (2020a). Removal of heavy metals in aquatic environment by graphene oxide composites: A review. Environmental Science and Pollution Research, 27, 190–209.

    Article  Google Scholar 

  • Zhang, S., Wang, H., Liu, J., & Bao, C. (2020b). Measuring the specific surface area of monolayer graphene oxide in water. Materials Letters, 261, 127098.

    Article  CAS  Google Scholar 

  • Zhang, X., Shan, R., Li, X., Yan, L., Ma, Z., Jia, R., & Sun, S. (2021). Effective removal of Cu (II), Pb (II) and Cd (II) by sodium alginate intercalated MgAl-layered double hydroxide: Adsorption properties and mechanistic studies. Water Science and Technology, 83, 975–984.

    Article  CAS  Google Scholar 

  • Zhou, T., Wu, L., Luo, Y., & Christie, P. (2018). Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environmental Pollution, 232, 514–522.

    Article  CAS  Google Scholar 

  • Zhu, S., Khan, M. A., Kameda, T., Xu, H., Wang, F., **a, M., & Yoshioka, T. (2022). New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. Journal of Hazardous Materials, 426, 128062.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by UTB internal research grant UTB/GSR/2/2023(2), Universiti Teknologi Brunei, Brunei Darussalam.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nabisab Mujawar Mubarak or Rama Rao Karri.

Ethics declarations

Ethical Approval

N/A.

Consent to Participate

N/A.

Consent for Publication

N/A.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubarak, N.M., Solangi, N.H., Karri, R.R. et al. Holistic Mechanism of Nanomaterials for Removal of Cd2+ from the Wastewater. Water Air Soil Pollut 235, 251 (2024). https://doi.org/10.1007/s11270-024-07067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07067-8

Keywords

Navigation