Verifying a Stochastic Model for the Spread of a SARS-CoV-2-Like Infection: Opportunities and Limitations

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

There is a growing interest in modeling and analyzing the spread of diseases like the SARS-CoV-2 infection using stochastic models. These models are typically analyzed quantitatively and are not often subject to validation using formal verification approaches, nor leverage policy syntheses and analysis techniques developed in formal verification.

In this paper, we take a Markovian stochastic model for the spread of a SARS-CoV-2-like infection. A state of this model represents the number of subjects in different health conditions. The considered model considers the different parameters that may have an impact on the spread of the disease and exposes the various decision variables that can be used to control it. We show that the modeling of the problem within state-of-the-art model checkers is feasible and it opens several opportunities. However, there are severe limitations due to i) the espressivity of the existing stochastic model checkers on one side, and ii) the size of the resulting Markovian model even for small population sizes.

This work is partially funded by the grant MOSES, Bando interno 2020 Università di Trento “Covid 19”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As shown in [19], this model is such that, for a population of N subjects, assuming there are n possible configurations (in our case \(n=8\)), the maximum number of possible states that can be generated is \(\left( {\begin{array}{c}N+n-1\\ N\end{array}}\right) \) that corresponds to the Bose-Einstein statistics.

  2. 2.

    https://bitbucket.org/luigipalopoli/covd_tool.

  3. 3.

    We refer the reader to [19] for a more detailed discussion of the literature on modeling and analyzing the spread of diseases with analytical models.

References

  1. Allen, L., et al.: Mathematical Epidemiology. Lecture Notes in Mathematics, Springer, Berlin (2008)

    Google Scholar 

  2. Anderson, R., May, R.: Infectious Diseases of Humans: Dynamics and Control. OUP, Oxford (1992)

    Google Scholar 

  3. Bernoulli, D.: Essai d’une nouvelle analyse de la mortalite causee par la petite verole, et des avantage de l’inoculation pour la prevenir. Mem. phys. Acade. Roy. Sci. 1(6), 1-45 (1760)

    Google Scholar 

  4. Blanchini, F., Franco, E., Giordano, G., Mardanlou, V., Montessoro, P.L.: Compartmental flow control: decentralization, robustness and optimality. Automatica 64, 18–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brauer, F., Castillo-Chavez, C., Feng, Z.: Mathematical Models in Epidemiology. Texts in Applied Mathematics, Springer, New York (2019)

    Book  MATH  Google Scholar 

  6. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer Science & Business Media, Berlin (2009)

    MATH  Google Scholar 

  7. Chauhan, K.: Epidemic analysis using traditional model checking and stochastic simulation. Master’s thesis, Indian Institute of Technology Hyderabad (2015)

    Google Scholar 

  8. Dobay, M.P., Dobay, A., Bantang, J., Mendoza, E.: How many trimers? modeling influenza virus fusion yields a minimum aggregate size of six trimers, three of which are fusogenic. Mol. BioSyst. 7, 2741–2749 (2011)

    Article  Google Scholar 

  9. Gani, J., Jerwood, D.: Markov chain methods in chain binomial epidemic models. Biometrics 27, 591–603 (1971)

    Article  Google Scholar 

  10. Ghezzi, L.L., Piccardi, C.: PID control of a chaotic system: an application to an epidemiological model. Automatica 33(2), 181–191 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giordano, G., et al.: Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Med. 26(6), 1–6 (2020)

    Article  Google Scholar 

  12. Haksar, R.N., Schwager, M.: Controlling large, graph-based MDPS with global control capacity constraints: an approximate LP solution. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 35–42 (2018). https://doi.org/10.1109/CDC.2018.8618745

  13. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  14. Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., Volk, M.: The probabilistic model checker Storm. Int. J. Softw. Tools Technol. Trans. 24, 1–22 (2021). https://doi.org/10.1007/s10009-021-00633-z

    Article  Google Scholar 

  15. Kermack, W.O., McKendrick, A.G., Walker, G.T.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)

    Google Scholar 

  16. Khanafer, A., Başar, T., Gharesifard, B.: Stability of epidemic models over directed graphs: a positive systems approach. Automatica 74, 126–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  18. Nasir, A., Baig, H.R., Rafiq, M.: Epidemics control model with consideration of seven-segment population model. SN Appl. Sci. 2(10), 1–9 (2020). https://doi.org/10.1007/s42452-020-03499-z

    Article  Google Scholar 

  19. Palopoli, L., Fontanelli, D., Frego, M., Roveri, M.: A Markovian model for the spread of the SARS-CoV-2 virus. CoRR abs/2204.11317 (2022)

    Google Scholar 

  20. Razzaq, M., Ahmad, J.: Petri net and probabilistic model checking based approach for the modelling, simulation and verification of internet worm propagation. PLOS ONE 10(12), 1–22 (2016)

    Google Scholar 

  21. Riccardo, F., Ajelli, M., Andrianou, X.D., et al.: Epidemiological characteristics of COVID-19 cases and estimates of the reproductive numbers 1 month into the epidemic, Italy, 28 January to 31 March 2020. Eurosurveillance 25(49) (2020)

    Google Scholar 

  22. Roveri, M., Ivankovic, F., Palopoli, L., Fontanelli, D.: Verifying a stochastic model for the spread of a sars-cov-2-like infection: opportunities and limitations (2022). https://doi.org/10.48550/ARXIV.2211.00605, https://arxiv.org/abs/2211.00605

  23. Sattenspiel, L.: Modeling the spread of infectious disease in human populations. Am. J. Phys. Anthropol. 33(S11), 245–276 (1990)

    Article  Google Scholar 

  24. Tuckwell, H.C., Williams, R.J.: Some properties of a simple stochastic epidemic model of sir type. Math. Biosci. 208(1), 76–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yousefpour, A., Jahanshahi, H., Bekiros, S.: Optimal policies for control of the novel coronavirus disease (COVID-19) outbreak. Chaos Solitons Fractals 136, 109883 (2020)

    Article  MathSciNet  Google Scholar 

  26. Zardini, A., et al.: A quantitative assessment of epidemiological parameters required to investigate COVID-19 burden. Epidemics 37, 100530 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Roveri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roveri, M., Ivankovic, F., Palopoli, L., Fontanelli, D. (2023). Verifying a Stochastic Model for the Spread of a SARS-CoV-2-Like Infection: Opportunities and Limitations. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation