Applicability of ISAP and RAPD Techniques for Capsicum Collection Genoty**

  • Chapter
  • First Online:
Advanced Crop Improvement, Volume 2

Abstract

Bulgaria was the secondary gene pool for many crops, and one of the first was pepper. However, during the political transforming and economic crises, the lands for growing pepper (Capsicum spp.) were reduced, and thereafter, the genetic diversity was lost. With pepper, Bulgaria still has priority providing on European scale valuable pepper germplasm, and this priority should be evaluated and preserved. We present our efforts to characterize pepper accessions using RAPD as well as the retroelement-based Inter-SINE Amplified Polymorphism (ISAP) method initially developed for potatoes. Several short interspersed nuclear element (SINE) families were active within the common ancestor of potato and pepper. We studied the degree of polymorphisms in a collection of 73 pepper genotypes, divided into six groups, using ISAP with primers derived from seven Solanaceae SINE families as well as two subfamilies. Two primer pairs from the families SolS-II and SolS-V generated the most fragments and most informative banding patterns. These SINE-based ISAP reactions are best suited for identifying species of the Capsicum genus. The most polymorphic profiles within all studied were generated by C. baccatum accessions. In contrast, intraspecific application of the SINE-based markers yielded a high percentage of conserved ISAP fragments. From a total of 56 C. annuum accessions, only three of them with two different profiles were identified. Our results demonstrate that potato-based SolS-SINE primers can be adapted for molecular genoty** in peppers. The low intraspecies polymorphism generated by ISAP forced us to investigate RAPD as an alternative low-cost genoty** approach. RAPD was successfully applied on a group of mutant lines and corresponding source lines, carrying valuable breeding traits. Despite the low polymorphic levels, we have identified four RAPD primers, capable to discriminate among several genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BSA:

Bovin serum albumin

CTAB:

Hexadecyltrimethylammonium bromide [(C16H33)N(CH3)3]Br

EDTA:

Ethylenediaminetetraacetic acid [CH2N(CH2CO2H)2]2

M:

Multiplex reaction

Sol:

Solanaceae

References

  • Adetula, O. (2005). Genetic diversity of capsicum using random amplified polymorphic DNAs. African Journal of Biotechnology, 5, 120–122.

    Google Scholar 

  • Ahn, Y., Tripathi, S., Kim, J., Cho, Y., Lee, H., Kim, D., Woo, J., & Yoon, M. (2014). Microsatellite marker information from high-throughput next-generation sequence data of Capsicum annuum varieties Mandarin and Blackcluster. Scientia Horticulturae, 170, 123–130.

    Article  CAS  Google Scholar 

  • Alzohairy, A. M., Gyulai, G., Mustafa, M., Edris, S., Sabir, J., Jansen, R. K., & Bahieldin, A. (2015). Retrotransposon-based plant DNA barcoding. In M. Ajmal Ali, G. Gyulai, & F. A. Hemaid (Eds.), Plant DNA barcoding and Phylogenetics (pp. 1–14). Lambert Academic Publishing.

    Google Scholar 

  • Arnedo-Andrés, M., Gil-Ortega, R., Luis-Arteaga, M., & Hormaza, J. (2002). Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theoretical and Applied Genetics, 105, 1067–1074.

    Article  PubMed  Google Scholar 

  • Bahurupe, J. V., Sakhare, S. B., Kulwal, P. L., Akhare, A. A., & Pawar, B. D. (2013). Genetic diversity analysis in chilli (Capsicum annuum L.) using RAPD markers. The Bioscan, An International Quarterly Journal of Life Sciences, 8, 915–918.

    CAS  Google Scholar 

  • Ballester, J., & Carmen de Vicente, M. (1998). Determination of F1 hybrid seed purity in pepper using PCR-based markers. Euphytica, 103, 223–226.

    Article  Google Scholar 

  • Baoxi, Z., Sanwen, H., Guimei, Y., & Jiazhen, G. (2000). Two RAPD markers linked to a major fertility restorer gene in pepper. Euphytica, 113, 155–161.

    Article  Google Scholar 

  • Bello-Bello, J., Iglesias-Andreu, L., Avilés-Viñas, S., Gómez-Uc, E., Canto-Flick, A., & Santana-Buzzy, N. (2014). Somaclonal variation in habanero pepper (Capsicum chinense Jacq.) as assessed ISSR molecular markers. Hort Science, 49, 481–485.

    CAS  Google Scholar 

  • Biedler, J., & Tu, Z. (2003). Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: Unprecedented diversity and evidence of recent activity. Molecular Biology аnd Evolution, 20, 1811–1825.

    Article  CAS  Google Scholar 

  • Cost, G. J., & Boeke, J. D. (1998). Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry, 37, 18081–18093.

    Article  CAS  PubMed  Google Scholar 

  • Deragon, J., & Zhang, X. (2006). Short Interspersed Elements (SINEs) in plants: Origin, classification, and use as phylogenetic markers. Systematic Biology, 55, 949–956.

    Article  PubMed  Google Scholar 

  • Eickbush, T. H., & Malik, H. S. (2002). In N. L. Craig, R. Craigie, M. Gellert, & A. M. Lambowitz (Eds.), Mobile DNA II (pp. 1111–1146). ASM, Herndon.

    Google Scholar 

  • Ferguson, A., Zhao, D., & Jiang, N. (2013). Selective acquisition and retention of genomic sequences by Pack-Mutator-like elements based on guanine-cytosine content and the breadth of expression. Plant Physiology, 163, 1419–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte, C., Jiang, N., & Wessler, S. (2002). Plant transposable elements: Where genetics meets genomics. Macmillan Magazines, 3, 329–341.

    CAS  Google Scholar 

  • Geleta, L. F., Labuschagne, M. Y., & Viljoen, C. D. (2005). Genetic variability in pepper (Capsicum annuum L.) estimated by morphological data and amplified fragment length polymorphism markers. Biodiversity and Conservation, 14, 2361–2375.

    Article  Google Scholar 

  • Gozukirmizi, N., Yilmaz, S., Marakli, S., & Temel, A. (2015). Retrotransposon-based molecular markers; tools for variation analysis in plants. Applications of molecular markers in plant genome analysis and breeding, Eds. Ksenija Taški-Ajduković Research Signpost.

    Google Scholar 

  • Hazarika, R., & Neog, B. (2014). Investigation of intraspecific diversity in Capsicum chinense using morphological and molecular markers. Indian Journal of Genetics and Plant Breeding, 74, 392–395.

    Article  CAS  Google Scholar 

  • Hedges, D. J., & Batzer, M. A. (2005). From the margins of the genome: Mobile elements shape primate evolution. BioEssays, 27, 785–794.

    Article  CAS  PubMed  Google Scholar 

  • Ibarra-Torresa, P., Valadez-Moctezumab, E., Pérez-Grajalesb, M., Rodríguez-Camposc, J., & Jaramillo-Floresa, M. (2015). Inter- and intraspecific differentiation of Capsicum annuum and Capsicum pubescens using ISSR and SSR markers. Scientia Horticulturae, 181, 137–146.

    Article  Google Scholar 

  • Ilbi, H. (2003). RAPD markers assisted varietal identification and genetic purity test in pepper, Capsicum annuum. Scientia Horticulturae, 97, 211–218.

    Article  CAS  Google Scholar 

  • Jang, I., Moon, J. H., Yoon, J. H., Yang, T. J., Kim, Y. J., & Park, H. G. (2004). Application of RAPD and SCAR markers for purity testing of F1 hybrid seed in chili pepper (Capsicum annuum). Molecular Cell, 18, 295–299.

    CAS  Google Scholar 

  • Kajikawa, M., Ichiyanagi, K., Tanaka, N., & Okada, N. (2005). Isolation and characterization of active LINE and SINEs from the Eel. Molecular Biology and Evolution, 22, 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Kalendar, R., & Schulman, A. H. (2006). IRAP and REMAP for retrotransposon-based genoty** and fingerprinting. Nature Protocols, 12478–12484.

    Google Scholar 

  • Kalendar, R., Vicient, C. M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., & Schulman, A. (2004). Large retrotransposon derivatives: Abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics, 166, 1437–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalendar, R., Flavell, A. J., Ellis, T., Sjakste, T., Moisy, C., & Schulman, A. H. (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity (Edinburgh), 106, 520–530.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Park, M., Yeom, S., Kim, Y. M., Lee, J. M., Lee, A. H., Seo, E., Choi, J., Cheong, K., Kim, T. K., Lee, W. G., Oh, K. S., Bae, C., Kim, S. B., Lee, Y. H., Kim, S. Y., Kim, M. S., Kang, C. C., Jo, D. Y., Yang, H. B., Jeong, J. H., Kang, H. W., Kwon, J. K., Shin, C., Lim, Y. J., Park, H. J., Huh, H. J., Kim, S. J., Kim, D. B., Cohen, O., Paran, I., Suh, C. M., Lee, B. S., Kim, K. Y., Shin, Y., Noh, J. S., Park, J., Seo, S. Y., Kwon, Y. S., Kim, A. H., Park, M. J., Kim, J. H., Chio, S. H., Lee, S. M., Yu, Y., Choi, D. Y., Park, S. B., Deynze, A., Ashrafi, H., Hill, T., Kim, T. W., Pai, S. H., Ahn, K. H., Yeam, I., Giovannoni, J. J., Rose, K. J., Sorensen, T. W., Lee, J. S., Kim, W. R., Choi, Y. I., Choi, S. B., Lim, S. J., Lee, H. Y., & Choi, D. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in capsicum species. Nature Genetics, 46, 270–278.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Pearce, S., McLean, K., Harrison, G., Heslop-Harrison, J. S., Waugh, R., & Flavell, A. J. (1997). The Ty1-copia group of retrotransposons in plants: Genomic organisation, evolution, and use as molecular markers. Genetica, 100(1–3), 205–217. https://doi.org/10.1023/A:1018393931948

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Singh, V., Singh, M., Raia, S., Kumar, S., Rai, S., & Rai, M. (2007). Genetics and distribution of fertility restoration associated RAPD markers in inbreds of pepper (Capsicum annuum L.). Scientia Horticulturae, 111, 197–202.

    Article  CAS  Google Scholar 

  • Lee, H., Ayarpadikannan, S., & Kim, H. (2015). Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes and Genetic Systems, 90, 245–257.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., & Quiros, C. F. (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to map** and gene tagging in Brassica. Theoretical Applied Genetics, 103, 455–461.

    Article  CAS  Google Scholar 

  • Lijun, O., & Xuexiao, Z. (2012). Inter simple sequence repeat analysis of genetic diversity of five cultivated pepper species. African Journal of Biotechnology, 11, 752–757.

    Article  Google Scholar 

  • Lippman, Z., Gendrel, A. V., Black, M., Vaughn, M. W., Dedhia, N., McCombie, W. R., Colot, V., & Martienssen, R. (2004). Role of transposable elements in heterochromatin and epigenetic control. Nature, 430, 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, K. D., Lackney, K., Blauth, R. J., Van Wijk, R., & Jahn, M. K. (1999). Genome map** in capsicum and evolution of genome structure in Solanaceae. Genetics, 155, 1183–1202.

    Article  Google Scholar 

  • Min, W. K., Han, J. H., Kang, W. H., Lee, H. R., & Kim, B. D. (2008). Reverse random amplified microsatellite polymorphism reveals enhanced polymorphisms in the 3’ end of simple sequence repeats in the pepper genome. Molecules and Cells, 26, 250–257.

    CAS  PubMed  Google Scholar 

  • Minamiyama, Y., & Tsuro, M. H. (2006). An SSR-based linkage map of Capsicum annuum. Molecular Breeding, 18, 157–169.

    Article  CAS  Google Scholar 

  • Moodley, V., Ibaba, J., Naidoo, R., & Gubba, A. (2014). Full-genome analyses of a Potato Virus Y (PVY) isolate infecting pepper (Capsicum annuum L.) in the Republic of South Africa. Virus Genes, 49, 466–476.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. K., & Haber, E. J. (1996). Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature, 383, 644–646.

    Article  PubMed  Google Scholar 

  • Munoz-Lopez, M., & Perez-Garacia, J. (2010). DNA transposons: Nature and applications in genomics. Current Genomics, 11, 115–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogundiwin, E. A., Berke, T. F., Massoudi, M., Black, L. L., Huestis, G., Choi, D., Lee, S., & Prince, J. P. (2005). Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome, 48, 698–711.

    Article  CAS  PubMed  Google Scholar 

  • Paran, I. (2013). Molecular linkage maps of capsicum. In B. Kang & C. Kole (Eds.), Genetics, genomics and breeding of peppers and eggplants (pp. 40–55). Taylor & Francis Group, 161 p.

    Chapter  Google Scholar 

  • Park, M., Jo, S., Kwon, J.-K., & Choi, D. (2011). Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics, 12, 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poryazov, I., Petkova, V., & Tomlekova, N. (2013). Vegetable production. “DIMI 99” Ltd. 318 p. /Bulgarian/.

    Google Scholar 

  • Pradeepkumar, T., Karihaloo, J. L., & Archak, S. (2001). Molecular characterization of Piper nigrum L. cultivars using RAPD markers. Current Sciences, 81, 245–248.

    Google Scholar 

  • Qin, C., Yu, C., Shen, Y., Fang, X., Chen, L., Min, J., Cheng, J., Zhao, S., Xu, M., Luo, Y., Yang, Y., Wu, Z., Mao, L., Wu, H., Ling-Hu, C., Zhou, H., Lin, H., González-Morales, S., Trejo-Saavedra, D., Tian, H., Tang, X., Zhao, M., Huang, Z., Zhou, A., Yao, X., Cui, J., Li, W., Chen, Z., Feng, Y., Niu, Y., Bi, S., Yang, X., Li, W., Cai, H., Luo, X., Montes-Hernández, S., Leyva-González, M., **ong, Z., He, X., Bai, L., Tan, S., Tang, X., Liu, D., Liu, J., Zhang, S., Chen, M., Zhang, L., Zhang, L., Zhang, Y., Liao, W., Zhang, Y., Wang, M., Lv, X., Wen, B., Liu, H., Luan, H., Zhang, Y., Yang, S., Wang, X., Xu, J., Li, X., Li, S., Wang, J., Palloix, A., Bosland, P., Li, Y., Krogh, A., Rivera-Bustamante, R., Herrera-Estrella, L., Yin, Y., Yu, J., Hu, K., & Zhang, Z. (2014). Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proceeding of the National Academy of Sciences of the United States of American, 111, 5135–5140.

    Article  CAS  Google Scholar 

  • Ravindran, S. (2012). Barbara McClintock and the discovery of jum** genes. Proceeding of the National Academy of Sciences of the United States of America, 109, 20198–20199.

    Article  CAS  Google Scholar 

  • Ray, D. A. (2007). SINEs of progress: Mobile element applications to molecular ecology. Molecular Ecology, 16, 19–33.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, J. M., Berke, T., Engle, L., & Nienhuis, J. (1999). Variation among and within Capsicum species revealed by RAPD markers. Theoretical Applied Genetics, 99, 147–156.

    Article  CAS  Google Scholar 

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., & Allard, R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences of the United States of America, 81, 8014–8018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, T. (1999). LINEs, SINEs and repetitive DNA: Non-LTR retrotransposons in plant genomes. Plant Molecular Biology, 40, 903–910.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, T., & Heslop-Harrison, J. S. (1998). Genomes, genes and junk: The large-scale organization of plant chromosomes. Trends in Plant Science, 3, 195–199.

    Article  Google Scholar 

  • Schulman, A. (2007). A unified classification system for eukaryotic transposable elements. Genetics, 8, 973–982.

    PubMed  Google Scholar 

  • Seibt, K. M., Wenke, T., Wollrab, C., Junghans, H., Muders, K., Dehmer, K. J., Diekmann, K., & Schmidt, T. (2012). Development and application of SINE-based markers for genoty** of potato varieties. Theoretical Applied Genetics, 125, 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Seibt, K. M., Wenke, T., Muders, K., Trubergm, B., & Schmidt, T. (2016). Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization. The Plant Journal, 86, 268–285.

    Article  CAS  PubMed  Google Scholar 

  • Sundaram, V., Cheng, Y., Ma, Z., Li, D., **ng, X., Edge, P., Snyder, M., & Wang, T. (2014). Wide spread contribution of transposable elements to the innovation of gene regulatory networks. Cold Spring Harbor Laboratory Press, 26, 1–14.

    Google Scholar 

  • Tam, S. M., Mhiri, C., Vogelaar, A., Kerkveld, M., Pearce, S. R., & Marie-Angèle, G. (2005). Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics, 110, 819–831.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley, S. D., Bernatzky, R., Lapitan, N. L., & Prince, J. P. (1988). Conservation of gene repertoire but not gene order in pepper and tomato. Proceedings of the National Academy of Sciences of the United States of America, 85, 6419–6423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thul, S., Darokar, M., Shasany, A., & Khanuja, S. (2012). Molecular profiling for genetic variability in Capsicum species based on ISSR and RAPD markers. Molecular Biotechnology, 51, 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Todorova, V., Boteva, H., Masheva, S., Cholakov, T., Kostova, D., Yankova, V., & Dincheva, T. S. (2014). Technologies for field pepper production. In S. Masheva, M. Mihov, V. Todorova, E. Nacheva, V. Yankova, & H. Boteva (Eds.), Technologies for production of vegetable crops and potatoes (pp. 41–66). Bulgarian, first edition, circulation 300, Blakom printing house – Plovdiv. 245 p. /Bulgarian/.

    Google Scholar 

  • Tomlekova, N., Spasova-Apostolova, V., & Panchev, I. (2016). RAPD analysis of Bulgarian pepper induced mutants. Comptes rendus de l’Académie bulgare des sciences, 69(6), 731–738.

    CAS  Google Scholar 

  • Tomlekova, N., Spasova-Apostolova, V., Nacheva, E., Stoyanova, M., Teneva, A., Petrov, N., & Schmidt, T. (2017a). Genoty** of Bulgarian potato varieties by SINE–based ISAP markers. Comptes rendus de l’Académie bulgare des Sciences, 70, 61–70.

    Google Scholar 

  • Tomlekova, N. B., White, P. J., Thompson, J. A., Penchev, E., & Nielen, S. (2017b). Mutation affecting fruit colour increases β-carotene concentration in sweet pepper. PLoS One, 12(2), e0172180. https://doi.org/10.1371/journal.pone.0172180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlekova, N., Spasova-Apostolova, V., Pantchev, I., & Sarsu, F. (2021). Mutation associated with orange fruit colour increases concentrations of β-carotene in a sweet pepper variety (Capsicum annuum L.). Food, 10(6), 1225. https://doi.org/10.3390/foods10061225

    Article  CAS  Google Scholar 

  • Toquica, S., Rodríguez, F., Martínez, E., Duque, M., & Tohme, J. (2003). Molecular characterization by AFLPs of capsicum germplasm from the Amazon. Genetic Resources and Crop Evolution, 50, 639–647.

    Article  Google Scholar 

  • Van de Lagemaat, L. N., Gagnier, L., Medstrand, P., & Mager, D. L. (2005). Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Research, 15, 1243–1249.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., & Zabeau, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Votava, E., Nabhan, G., & Bosland, P. (2002). Genetic diversity and similarity revealed via molecular analysis among and within an in-situ population and ex situ accessions of chiltepín (Capsicum annuum var. glabriusculum). Conservation Genetics, 3, 123–129.

    Article  CAS  Google Scholar 

  • Wang, T., Zeng, J., Lowe, C. B., Sellers, R. G., Salama, S. R., Yang, M., Burgess, S. M., Brachmann, R. K., & Haussler, D. (2007). Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p 53. Proceedings of the National Academy of Sciences of the United States of America, 104, 18613–18618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiner, A. M., Deininger, P. L., & Efstratiadis, A. (1986). Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annual Review of Biochemistry, 55, 631–661.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenke, T., Döbel, T., Sörensen, T. R., Junghans, H., Weisshaar, B., & Schmidt, T. (2011). Targeted identification of short interspersed nuclear element families shows their widespread existence and extreme heterogeneity in plant genomes. Plant Cell, 23, 3117–3128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler, S. (1998). Transposable elements associated with normal plant genes. Physiologia Plantarum, 103, 581–586.

    Article  CAS  Google Scholar 

  • Wessler, S. (2006). Transposable elements and the evolution of eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 103, 17600–17601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavel, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., Miguel, S., & Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8, 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J., Kubelik, A. R., Livak, K., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkfein, R. J., Moir, R. D., Krawetz, S. A., Blanco, J., States, J. C., & Dixon, G. H. (1988). A new family of repetitive, retroposon-like sequences in the genome of the rainbow trout. European Journal of Biochemistry, 176, 255–264.

    Article  CAS  PubMed  Google Scholar 

  • Wu, F., & Tanksley, S. D. (2010). Chromosomal evolution in the plant family Solanaceae. BMC Genomics, 11, 182.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, F., Eannetta, N. T., Xy, Y., Durrett, R., Mazourek, M., Jahn, M. M., & Tanksley, S. D. (2009). A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theoretical Applied Genetics, 118, 1279–1293.

    Article  CAS  PubMed  Google Scholar 

  • **ong, Y., & Eickbush, T. H. (1990). Origin and evolution of retroelements based upon their reverse transcriptase sequences. The EMBO Journal, 9, 3353–3362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Zeng, L., Li, Y., & Wang, H. (2014). Inheritance of resistance to Phythophtora capsici in Capsicum annuum and analysis of relative SRAP markers. Journal of Chemical and Pharmaceutical Research, 6, 1967–1972.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the International Atomic Energy Agency, grant numbers BUL/5/016 and RER/5/024. We are grateful for the contribution of Prof. Thomas Schmidt (Dresden University of Technology, Germany) in the development and introduction of the ISAP technique as a means of identifying and studying members of the family Solanaceae.

Funding

 This research was funded by International Atomic Energy Agency, Technical Cooperation projects BUL/5/016 and RER/5/024.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tomlekova, N. et al. (2023). Applicability of ISAP and RAPD Techniques for Capsicum Collection Genoty**. In: Raina, A., Wani, M.R., Laskar, R.A., Tomlekova, N., Khan, S. (eds) Advanced Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-031-26669-0_3

Download citation

Publish with us

Policies and ethics

Navigation