Log in

Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports and other Rosaceae species

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Inter-retrotransposon amplified polymorphisms (IRAP) are one of the main components of the retrotransposon-based molecular marker system, but currently have no applications in pear. In this context, new IRAP markers were developed and used to study the genetic polymorphism of pear cultivars and bud mutants. In total, eight polymorphic IRAP markers were selected in ten genotypes of pear with a wide variation in genetic backgrounds and for further genotypic identification of cultivars and bud sports. A total of 76 alleles with an average of 9.5 per locus were amplified and 96.05 % showed polymorphism. Through genetic structure analysis, 62 pear cultivars were divided into two groups, i.e., Oriental and Occidental pears, with a few samples showing a distinct admixed genetic background. When polymorphic IRAP markers were tested on a total of 33 bud sports and their corresponding parent cultivars, the genetic similarity coefficient ranged from 0.54 to 0.96. Each bud mutation was separated from its original variety, and 92.3 % of bud sports clustered perfectly with their original varieties. Furthermore, the transferability of pear IRAP to apples and other Rosaceae species was very high, ranging from 87.5 to 100 %. Our results demonstrate that IRAP markers are an excellent tool for the study of genetic relationships and comparative genomics analysis in pear and Rosaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonius-Klemola K, Kalendar R, Schulman AH (2006) TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet 112(6):999–1008

    Article  CAS  PubMed  Google Scholar 

  • Baránek M, Meszáros M, Sochorová J, Čechová J, Raddová J (2012) Utility of retrotransposon-derived marker systems for differentiation of presumed clones of the apricot cultivar Velkopavlovická. Sci Hortic 143:1–6

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196(1):80–83

    Article  CAS  PubMed  Google Scholar 

  • Bassil N, Postman JD (2010) Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol 57(3):357–370

    Article  Google Scholar 

  • Bonchev G, Parisod C (2013) Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour 13(5):765–75

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell Online 24(3):1242–1255

    Article  CAS  Google Scholar 

  • Cai Y, Cao D, Zhao G (2007) Studies on genetic variation in cherry germplasm using RAPD analysis. Sci Hortic 111(3):248–254

    Article  CAS  Google Scholar 

  • Campbell BC, LeMare S, Piperidis G, Godwin ID (2011) IRAP, a retrotransposon-based marker system for the detection of somaclonal variation in barley. Mol Breeding 27(2):193–206

    Article  Google Scholar 

  • Castro I, D’Onofrio C, Martín JP, Ortiz JM, De Lorenzis G, Ferreira V, Pinto-Carnide O (2012) Effectiveness of AFLPs and retrotransposon-based markers for the identification of Portuguese grapevine cultivars and clones. Mol Biotech 52(1):26–39

    Article  CAS  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One 9(4):e92644

    Article  PubMed Central  PubMed  Google Scholar 

  • del Mar Naval M, Zuriaga E, Pecchioli S, Llácer G, Giordani E, Badenes ML (2010) Analysis of genetic diversity among persimmon cultivars using microsatellite markers. Tree Genet Genomes 6(5):677–687

    Article  Google Scholar 

  • Dondini L, Sansavini S, Venturi S, De Franceschi P (2007) Retrotransposon based markers to discriminate sports in pear. XII EUCARPIA Symposium Fruit Breeding Genet 814:701–704

    Google Scholar 

  • Du J, Tian Z, Bowen NJ et al (2010) Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swap** in soybean. Plant Cell 22:48–61

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • El Baidouri M, Carpentier M-C, Cooke R, Gao D, Lasserre E, Llauro C, Mirouze M, Picault N, Jackson SA, Panaud O (2014) Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res 24(5):831–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan L, Zhang M, Liu Q, Li L, Song Y, Wang L, Zhang S, Wu J (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep 31(6):1271–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338(6108):758–767

    Article  CAS  PubMed  Google Scholar 

  • Ferguson AA, Zhao DY, Jiang N (2013) Selective acquisition and retention of genomic sequences by pack-mutator-like elements based on guanine-cytosine content and the breadth of expression. Plant Physiol 163(3):1419–1432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3(5):329–341

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breeding 23(3):397–411

    Article  CAS  Google Scholar 

  • Goulao L, Cabrita L, Oliveira CM, Leitão JM (2001) Comparing RAPD and AFLPTM analysis in discrimination and estimation of genetic similarities among apple (Malus domestica Borkh.) cultivars. Euphytica 119(3):259–270

    Article  CAS  Google Scholar 

  • Han X, Wang L, Liu Z, Jan D, Shu Q (2008) Characterization of sequence-related amplified polymorphism markers analysis of tree peony bud sports. Sci Hortic 115(3):261–267

    Article  CAS  Google Scholar 

  • He P, Ma Y, Dai H, Li L, Liu Y, Li H, Zhao G, Zhang Z (2012) Development of Ty1-copia retrotransposon-based S-SAP markers in strawberry (Fragaria x ananassa Duch.). Sci Hortic 137:43–48

    Article  CAS  Google Scholar 

  • Jiang N, Bao Z et al (2002) Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genoty** and fingerprinting. Nat Protocols 1(5):2478–2484

    Article  CAS  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98(5):704–711

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci U S A 105(15):5833–5838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci 98(15):8714–8719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA (2014) Transcriptional control of fleshy fruit development and ripening. J Exp Bot 65(16):4527–4541

    Article  PubMed  Google Scholar 

  • Kawakami T, Dhakal P, Katterhenry AN, Heatherington CA, Ungerer MC (2011) Transposable element proliferation and genome expansion are rare in contemporary sunflower hybrid populations despite widespread transcriptional activity of LTR retrotransposons. Genome Biol Evol 3:156–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim H, Yamamoto M, Hosaka F, Terakami S, Nishitani C, Sawamura Y, Yamane H, Wu J, Matsumoto T, Matsuyama T (2011) Molecular characterization of novel Ty1-copia-like retrotransposons in pear (Pyrus pyrifolia). Tree Genet Genomes 7(4):845–856

    Article  Google Scholar 

  • Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T (2012) Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breeding Sci 62(1):53

    Article  CAS  Google Scholar 

  • Kimura T, Shi Y, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T (2002) Identification of Asian pear varieties by SSR analysis. Breeding Sci 52(2):115–121

    Article  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304(5673):982–982

    Article  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33(1):479–532

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Zhao J, Cai QL, Liu GC, Wang JR, Zhao ZH, Liu P, Dai L, Yan GJ, Wang WJ, Li XS, Chen Y, Sun YD, Liu ZG, Lin MJ, **ao J, Chen YY, Li XF, Wu B, Ma Y, Jian JB, Yang W, Yuan Z, Sun XC, Wei YL, Yu LL, Zhang C, Liao SG, He RJ, Guang XM, Wang Z, Zhang YY, Luo LH (2014) The complex jujube genome provides insights into fruit tree biology. Nature Communications 5

  • Lombard PB, Westwood MN (1987) Pear rootstocks, p. 145–183. In: Romand RC, Carlson RF (eds). Rootstocks for fruit crops. Wiley, New York. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101 (34):12404–12410

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101(34):12404–12410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manninen O, Kalendar R, Robinson J, Schulman AH (2000) Application of BARE-1 retrotransposon markers to the map** of a major resistance gene for net blotch in barley. Mol Gen Genet 264(3):325–334

    Article  CAS  PubMed  Google Scholar 

  • Mase N, Iketani H, Sato Y (2007) Analysis of bud sport cultivars of peach (Prunus persica (L.) Batsch) by simple sequence repeats (SSR) and restriction landmark genomic scanning (RLGS). J Jpn Soc Hortic Sci 76(1):20–27

    Article  CAS  Google Scholar 

  • McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19(3):362–367

    Article  CAS  PubMed  Google Scholar 

  • Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel C-E (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic map** in European pear and interspecific Pyrus hybrids. PLoS One 8(10):e77022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monte-Corvo L, Cabrita L, Oliveira C, Leitão J (2000) Assessment of genetic relationships among Pyrus species and cultivars using AFLP and RAPD markers. Genet Resour Crop Evol 47(3):257–265

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76(10):5269–5273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • NTSYS-pc RF (2000) Numerical taxonomy and multivariate analysis system, version2.1. Exeter Publishing, Setauket

    Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L, Goulao L, Silva DM (1999) Molecular ty** of Pyrus based on RAPD markers. Sci Hortic 79(3):163–174

    Article  CAS  Google Scholar 

  • Pan Z, Kawabata S, Sugiyama N, Sakiyama R, Cao Y (2001) Genetic diversity of cultivated resources of pear in north China. In: International Symposium on Asian Pears, Commemorating the 100th Anniversary of Nijisseiki Pear 587:187–194

  • Petersen R (2014) Molecular genetic causes of columnar growth in apple (Malus x domestica). Mainz, Univ, Diss

  • Pierantoni L, Cho K, Shin I, Chiodini R, Tartarini S, Dondini L, Kang S, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109(7):1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rigal M, Mathieu O (2011) A “mille-feuille” of silencing: epigenetic control of transposable elements. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1809(8):452–458

    Article  CAS  Google Scholar 

  • Schulman AH (2007) Molecular markers to assess genetic diversity. Euphytica 158(3):313–321

    Article  CAS  Google Scholar 

  • Shi Y, Yamamoto T, Hayashi T (2002) Characterization of copia-like retrotransposons in pear [Pyrus serotina]. J Jpn Soc Hortic Sci 71:723–729

    Article  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285

    Article  CAS  PubMed  Google Scholar 

  • Smýkal P (2006) Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification. J Appl Genet 47(3):221–230

    Article  PubMed  Google Scholar 

  • Tanskanen JA, Sabot F, Vicient C, Schulman AH (2007) Lifewithout GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390:166–174

    Article  CAS  PubMed  Google Scholar 

  • Tignon M, Kettmann R, Watillon B (1998) AFLP: use for the identification of apple cultivars and mutants. In: XXV International Horticultural Congress, part 11. Appl Biotechnol Mol Biol Breeding-Gene 521:219–226

    Google Scholar 

  • Vanneste K, Baele G, Maere S, Van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res 24(8):1334–1347

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci U S A 89(15):7124–7128

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang S, Schnell RA, Lefebvre PA (1998) Isolation and characterization of a new transposable element in Chlamydomonas reinhardtii. Plant Mol Biol 38(5):681–687

    Article  CAS  PubMed  Google Scholar 

  • Wessler SR (2006) Eukaryotic transposable elements: teaching old genomes new tricks. The implicit genome 138–165

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982

    Article  CAS  PubMed  Google Scholar 

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200(4):993–999

    Article  CAS  PubMed  Google Scholar 

  • Woodrow P, Pontecorvo G, Ciarmiello LF (2012) Isolation of Ty1-copia retrotransposon in myrtle genome and development of S-SAP molecular marker. Mol Biol Rep 39(4):3409–3418

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23(2):396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102(6–7):865–870

    Article  CAS  Google Scholar 

  • Yang C, Wei Z, Jiang J (2006) DNA extraction of birch leaves by improved CTAB method and optimization of its ISSR system. J Forestry Res 17(4):298–300

    Article  Google Scholar 

  • Yao J, Dong Y, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci 98(3):1306–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeh FC, Yang R, Boyle T, Ye Z, Mao JX (1999) POPGENE, version 1.32: the user friendly software for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, AB, Canada

  • Yin H, Liu J, Xu Y, Liu X, Zhang S, Ma J, Du J (2013) TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. PLoS One 8(7):e68587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin H, Du J, Li L, ** C, Fan L, Li M, Wu J, Zhang S (2014) Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.). Genome Biol Evol 6(6):1423–1436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang M, Fan L, Liu Q, Song Y, Wei S, Zhang S, Wu J (2013) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Rep 32(1):290–302

    Article  CAS  Google Scholar 

  • Zhao G, Dai H, Chang L, Ma Y, Sun H, He P, Zhang Z (2010) Isolation of two novel complete Ty1-copia retrotransposons from apple and demonstration of use of derived S-SAP markers for distinguishing bud sports of Malus domestica cv. Fuji. Tree Genet Genomes 6(1):149–159

  • Zhao Y, Lin H, Guo Y, Liu Z, Guo X, Li K (2013) Genetic linkage maps of pear based on srap markers. Pak J Botany 45(4):1265–1271

    CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF) (CX (14) 2020), National Science Foundation of China (31372045), Ministry of Education Program for New Century Excellent Talents in University (NCET-13-0864).

Conflict of interests

The authors declare that they have no conflict of interests.

Data archiving statement

We followed standard Tree Genetics and Genomes policy. We archived the contigs in the FASTA format from the sequences which are available at our genome website http://peargenome.njau.edu.cn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wu.

Additional information

Communicated by D. Chagné

Jiangmei Sun and Hao Yin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 33 kb)

Fig. S2

(DOC 91 kb)

Table S1

(DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yin, H., Li, L. et al. Evaluation of new IRAP markers of pear and their potential application in differentiating bud sports and other Rosaceae species. Tree Genetics & Genomes 11, 25 (2015). https://doi.org/10.1007/s11295-015-0849-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0849-y

Keywords

Navigation