Reifung von aus pluripotenten Stammzellen gewonnenen Kardiomyozyten und Zukunftsperspektiven für die regenerative Medizin

  • Chapter
  • First Online:
Stammzellen
  • 450 Accesses

Zusammenfassung

Aus pluripotenten Stammzellen gewonnene Kardiomyozyten (PSC-CMs) haben ein großes Potenzial als Quelle für Kardiomyozyten, um abgestorbene Zellen bei Herzerkrankungen zu ersetzen (regenerative Medizin), die Pathophysiologie vererbter Herzerkrankungen wie Kardiomyopathie nachzuvollziehen (Krankheitsmodellierung) und die Toxizität neu entwickelter Arzneimittel in vitro zu testen (Arzneimittelforschung). Dank der Fortschritte, die in den letzten zwei Jahrzehnten bei der Gewinnung von PSC-CMs erzielt wurden, können hochgradig gereinigte PSC-CMs mit hoher Ausbeute zur Behandlung von Patienten hergestellt werden. Aufgrund ihrer Unreife, die einem fötalen Stadium ähnelt, ist der Nutzen von PSC-CMs für die Krankheitsmodellierung und die Entdeckung von Medikamenten jedoch noch begrenzt. Daher gewinnt die Reifung von Kardiomyozyten zunehmend an Bedeutung. In diesem Kapitel fassen wir die wichtigsten Merkmale zusammen, die unreife und reife Kardiomyozyten definieren, sowie den Prozess, wie Kardiomyozyten im Herzen reifen. Angesichts der Erkenntnis, dass PSC-CMs nach der Transplantation in Herzen reifer sind, müssen geeignete Umgebungsbedingungen entscheidend für die Reifung sein. Daher werden mögliche Einflussfaktoren wie Zeit (verlängerte Kultur), Kulturumgebungen (z. B. extrazelluläre Matrizen, postnatale Hormone, Veränderungen der Stoffwechselsubstrate und Substratsteifigkeit), interzelluläre Kommunikation (z. B. physikalische Stimulationen und die Auswirkungen benachbarter Nicht-Kardiomyozyten), In-vivo-Reifung und dreidimensionale Kultursysteme untersucht. Am Ende des Kapitels geben wir auch einen Ausblick auf die Verwendung reifer PSC-CMs in der Krankheitsmodellierung, der Arzneimittelforschung und der regenerativen Medizin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP:

Aktionspotenzial

ARVD/C:

Arrhythmogene rechtsventrikuläre Dysplasie/Kardiomyopathie

BMP:

Morphogenetisches Knochenprotein

Cx43:

Connexin 43

CDK:

Cyclin-abhängige Kinase

DCM:

Dilatative Kardiomyopathie

ES-Zellen:

Embryonale Stammzellen

ECMs:

Extrazelluläre Matrices

FAO:

β-Oxidation von Fettsäuren

hCMPs:

Menschliche Herzmuskel-Patches

hERG:

Menschliches Ether-a-go-go-verwandtes Gen

HCN4:

Hyperpolarisations-aktivierter durch zyklische Nukleotide gesteuerter Kanal 4

iPS-Zellen:

Induzierte pluripotente Stammzellen

LTCCs:

Kalziumkanäle vom L-Typ

MI:

Myokardinfarkt

MHC:

Schwere Myosinkette

NRVMs:

Neonatale ventrikuläre Myozyten der Ratte

PKP2:

Plakophilin-2

PSCs:

Pluripotente Stammzellen

PSC-CMs:

Aus pluripotenten Stammzellen gewonnene Kardiomyozyten

RBM20:

RNA-Bindungsmotiv-Protein 20

RYRs:

Ryanodin-Rezeptoren

SR:

Sarkoplasmatisches Retikulum

SERCA2a:

Kalzium-ATPase 2a des sarkoplasmatischen/endoplasmatischen Retikulums

NCX:

Natrium-Calcium-Austauscher

T-Tubuli:

Transversaltubuli

Literatur

  • Abu-Issa R, Kirby ML (2007) Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 23:45–68

    Article  CAS  PubMed  Google Scholar 

  • Bajaj P, Tang X, Saif TA, Bashir R (2010) Stiffness of the substrate influences the phenotype of embryonic chicken cardiac myocytes. J Biomed Mater Res A 95(4):1261–1269

    Article  PubMed  Google Scholar 

  • Bedada FB, Chan SS-K, Metzger SK, Zhang L, Zhang J, Garry DJ et al (2014) Acquisition of a quantitative, stoichiometrically conserved ratiometric marker of maturation status in stem cell-derived cardiac myocytes. Stem Cell Rep 3(4):594–605

    Article  CAS  Google Scholar 

  • Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205

    Article  CAS  PubMed  Google Scholar 

  • Bird SD, Doevendans PA, van Rooijen MA, Brutel de la Riviere A, Hassink RJ, Passier R et al (2003) The human adult cardiomyocyte phenotype. Cardiovasc Res 58(2):423–434

    Article  CAS  PubMed  Google Scholar 

  • Braam SR, Passier R, Mummery CL (2009) Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery. Trends Pharmacol Sci 30(10):536–545

    Article  CAS  PubMed  Google Scholar 

  • Brodsky VY, Sarkisov DS, Arefyeva AM, Panova NW, Gvasava IG (1994) Polyploidy in cardiac myocytes of normal and hypertrophic human hearts; range of values. Virchows Arch 424(4):429–435

    Article  Google Scholar 

  • Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet E (2019) Pacemaking in cardiac tissue. From IK2 to a coupled-clock system. Physiol Rep 7(1):e13862

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvajal-Vergara X, Sevilla A, D’Souza SL, Ang Y-S, Schaniel C, Lee D-F et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465(7299):808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanthra N, Abe T, Miyamoto M, Sekiguchi K, Kwon C, Hanazono Y et al (2020) A novel fluorescent reporter system identifies Laminin-511/521 as potent regulators of cardiomyocyte maturation. Sci Rep 10(1):4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z et al (2015) Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 15(2):365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho G-S, Lee DI, Tampakakis E, Murphy S, Andersen P, Uosaki H et al (2017) Neonatal transplantation confers maturation of PSC-derived cardiomyocytes conducive to modeling cardiomyopathy. Cell Rep 18(2):571–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correia C, Koshkin A, Duarte P, Hu D, Teixeira A, Domian I et al (2017) Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci Rep 7(1):8590

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai D-F, Danoviz ME, Wiczer B, Laflamme MA, Tian R (2017) Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int 2017:5153625

    Article  PubMed  PubMed Central  Google Scholar 

  • Denning C, Borgdorff V, Crutchley J, Firth KSA, George V, Kalra S et al (2016) Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 1863(7 Pt B):1728–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar AL, Ribeiro-Costa R, Villalba-Galea C, Zoghbi ME, Pérez CG, Mejía-Alvarez R (2004) Developmental changes of intracellular Ca2+ transients in beating rat hearts. Am J Physiol Heart Circ Physiol 286(3):H971–H978

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  • Feric NT, Radisic M (2016) Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 96:110–134

    Article  CAS  PubMed  Google Scholar 

  • Feyen DAM, McKeithan WL, Bruyneel AAN, Spiering S, Hörmann L, Ulmer B et al (2020) Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Rep 32(3):107925

    Article  CAS  PubMed  Google Scholar 

  • Frawley LE, Orr-Weaver TL (2015) Polyploidy. Curr Biol CB 25(9):R353–R358

    Article  CAS  PubMed  Google Scholar 

  • Friedman CE, Nguyen Q, Lukowski SW, Helfer A, Chiu HS, Miklas J et al (2018) Single-cell transcriptomic analysis of cardiac differentiation from human PSCs reveals HOPX-dependent cardiomyocyte maturation. Cell Stem Cell 23(4):586–598.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K et al (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT (2017) Cardiac regeneration: lessons from development. Circ Res 120(6):941–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Gregorich ZR, Zhu W, Mattapally S, Oduk Y, Lou X et al (2018) Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137(16):1712–1730

    Article  PubMed  Google Scholar 

  • Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY et al (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86(2):426–430

    Article  CAS  PubMed  Google Scholar 

  • Germanguz I, Sedan O, Zeevi-Levin N, Shtrichman R, Barak E, Ziskind A et al (2011) Molecular characterization and functional properties of cardiomyocytes derived from human inducible pluripotent stem cells. J Cell Mol Med 15(1):38–51

    Article  CAS  PubMed  Google Scholar 

  • González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE et al (2018) Myocardial Polyploidization creates a barrier to heart regeneration in zebrafish. Dev Cell 44(4):433–446.e7

    Article  PubMed  PubMed Central  Google Scholar 

  • Goversen B, van der Heyden MAG, van Veen TAB, de Boer TP (2018) The immature electrophysiological phenotype of iPSC-CMs still hampers in vitro drug screening: special focus on IK1. Pharmacol Ther 183:127–136

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Abrams RMC, Babiarz JE, Cohen JD, Kameoka S, Sanders MJ et al (2011) Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci Off J Soc Toxicol 123(1):281–289

    Article  CAS  Google Scholar 

  • Guo Y, Pu WT (2020) Cardiomyocyte maturation: new phase in development. Circ Res 126(8):1086–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herron TJ, Rocha AMD, Campbell KF, Ponce-Balbuena D, Willis BC, Guerrero-Serna G et al (2016) Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function. Circ Arrhythm Electrophysiol 9(4):e003638

    Article  CAS  PubMed  Google Scholar 

  • Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S et al (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose K, Payumo AY, Cutie S, Hoang A, Zhang H, Guyot R et al (2019) Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364(6436):184–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekstra M, Mummery CL, Wilde AAM, Bezzina CR, Verkerk AO (2012) Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front Physiol 3:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Horikoshi Y, Yan Y, Terashvili M, Wells C, Horikoshi H, Fujita S et al (2019) Fatty acid-treated induced pluripotent stem cell-derived human cardiomyocytes exhibit adult cardiomyocyte-like energy metabolism phenotypes. Cell 8(9):1095

    Article  CAS  Google Scholar 

  • Huang J, Hove-Madsen L, Tibbits GF (2008) Ontogeny of Ca2+−induced Ca2+ release in rabbit ventricular myocytes. Am J Physiol Cell Physiol 294(2):C516–C525

    Article  CAS  PubMed  Google Scholar 

  • Iorga B, Schwanke K, Weber N, Wendland M, Greten S, Piep B et al (2017) Differences in contractile function of myofibrils within human embryonic stem cell-derived cardiomyocytes vs. adult ventricular myofibrils are related to distinct sarcomeric protein isoforms. Front Physiol 8:1111

    Article  PubMed  Google Scholar 

  • Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G et al (2011) Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One 6(4):e18037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95(7):3479–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacot JG, Martin JC, Hunt DL (2010) Mechanobiology of cardiomyocyte development. J Biomech 43(1):93–98

    Article  PubMed  Google Scholar 

  • Janowski E, Cleemann L, Sasse P, Morad M (2006) Diversity of Ca2+ signaling in develo** cardiac cells. Ann N Y Acad Sci 1080:154–164

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Park P, Hong S-M, Ban K (2018) Maturation of cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Mol Cells 41(7):613–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson MKB, Vos MA, Mirams GR, Duker G, Sartipy P, de Boer TP et al (2012) Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol 52(5):998–1008

    Article  CAS  PubMed  Google Scholar 

  • Kadota S, Shiba Y (2019) Pluripotent stem cell-derived cardiomyocyte transplantation for heart Disease treatment. Curr Cardiol Rep 21(8):73

    Article  PubMed  Google Scholar 

  • Kadota S, Minami I, Morone N, Heuser JE, Agladze K, Nakatsuji N (2013) Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur Heart J 34(15):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Kadota S, Pabon L, Reinecke H, Murry CE (2017) In vivo maturation of human induced pluripotent stem cell-derived cardiomyocytes in neonatal and adult rat hearts. Stem Cell Rep 8(2):278–289

    Article  CAS  Google Scholar 

  • Kamakura T, Makiyama T, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J et al (2013) Ultrastructural maturation of human-induced pluripotent stem cell-derived cardiomyocytes in a long-term culture. Circ J 77(5):1307–1314

    Article  CAS  PubMed  Google Scholar 

  • Kane C, Couch L, Terracciano CMN (2015) Excitation-contraction coupling of human induced pluripotent stem cell-derived cardiomyocytes. Front Cell Dev Biol 3:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Karakikes I, Ameen M, Termglinchan V, Wu JC (2015) Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ Res 117(1):80–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X et al (2020) Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 17(6):341–359

    Article  PubMed  PubMed Central  Google Scholar 

  • Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240

    Article  CAS  PubMed  Google Scholar 

  • Kawatou M, Masumoto H, Fukushima H, Morinaga G, Sakata R, Ashihara T et al (2017) Modelling torsade de pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nat Commun 8(1):1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 10(9):1345–1361

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Majdi M, **a P, Wei KA, Talantova M, Spiering S et al (2010) Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 19(6):783–795

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Wong J, Wen J, Wang S, Wang C, Spiering S et al (2013) Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs. Nature 494(7435):105–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmidis G, Bellin M, Ribeiro MC, van Meer B, Ward-van Oostwaard D, Passier R et al (2015) Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure. Biochem Biophys Res Commun 467(4):998–1005

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA (2008) Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/AKT pathway. Circ Res 102(4):439–447

    Article  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473(7347):326–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L et al (2013) Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12(1):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM et al (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci U S A 109(27):E1848–E1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lian X, Bao X, Zilberter M, Westman M, Fisahn A, Hsiao C et al (2015) Chemically defined, albumin-free human cardiomyocyte generation. Nat Methods 12(7):595–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu A, Tang M, ** J, Gao L, Zheng Y, Luo H et al (2010) Functional characterization of inward rectifier potassium ion channel in murine fetal ventricular cardiomyocytes. Cell Physiol Biochem 26(3):413–420

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang C-H, Ammanamanchi N, Suresh S, Lewarchik C, Rao K et al (2019) Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci Transl Med 11(513):eaaw6419

    Google Scholar 

  • Liu J, Fu JD, Siu CW, Li RA (2007) Functional sarcoplasmic reticulum for calcium handling of human embryonic stem cell-derived cardiomyocytes: insights for driven maturation. Stem Cells 25(12):3038–3044

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lieu DK, Siu CW, Fu J-D, Tse H-F, Li RA (2009) Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression. Am J Physiol Cell Physiol 297(1):C152–C159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Yasui K, Opthof T, Ishiki R, Lee J-K, Kamiya K et al (2002) Developmental changes of ca(2+) handling in mouse ventricular cells from early embryo to adulthood. Life Sci 71(11):1279–1292

    Article  CAS  PubMed  Google Scholar 

  • Lompre AM, Schwartz K, d’Albis A, Lacombe G, Van Thiem N, Swynghedauw B (1979) Myosin isoenzyme redistribution in chronic heart overload. Nature 282(5734):105–107

    Article  CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Jaswal JS (2010) Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol 56(2):130–140

    Article  CAS  PubMed  Google Scholar 

  • Lundy SD, Zhu W-Z, Regnier M, Laflamme MA (2013) Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev 22(14):1991–2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCain ML, Parker KK (2011) Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 462(1):89–104

    Article  CAS  PubMed  Google Scholar 

  • McCain ML, Agarwal A, Nesmith HW, Nesmith AP, Parker KK (2014) Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues. Biomaterials 35(21):5462–5471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2(5):1448–1460

    Article  CAS  PubMed  Google Scholar 

  • Miquerol L, Kelly RG (2013) Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol 2(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Mohamed TMA, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A et al (2018) Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173(1):104–116.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y et al (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 110(4):1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Murry CE (2019) Function follows form – a review of cardiac cell therapy. Circ J 83(12):2399–2412

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano H, Minami I, Braas D, Pappoe H, Wu X, Sagadevan A et al (2017) Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. Elife 6:e29330

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, **ao Y, Zhang B et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10(8):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivetti G, Cigola E, Maestri R, Corradi D, Lagrasta C, Gambert SR et al (1996) Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 28(7):1463–1477

    Article  CAS  PubMed  Google Scholar 

  • Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K et al (2017) Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 121(12):1323–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson M, Barske L, Van Handel B, Rau CD, Gan P, Sharma A et al (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49(9):1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR (1994) Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90(2):713–725

    Article  CAS  PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter GA, Hom J, Hoffman D, Quintanilla R, de Mesy BK, Sheu S-S (2011) Bioenergetics, mitochondria, and cardiac myocyte differentiation. Prog Pediatr Cardiol 31(2):75–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Prakash YS, Cody MJ, Housmans PR, Hannon JD, Sieck GC (1999) Comparison of cross-bridge cycling kinetics in neonatal vs. adult rat ventricular muscle. J Muscle Res Cell Motil 20(7):717–723

    Article  CAS  PubMed  Google Scholar 

  • Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R et al (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101(52):18129–18134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinecke H, Zhang M, Bartosek T, Murry CE (1999) Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100(2):193–202

    Article  CAS  PubMed  Google Scholar 

  • Ruan J-L, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L et al (2016) Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation 134(20):1557–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabry MA, Dhoot GK (1989) Identification and pattern of expression of a developmental isoform of troponin I in chicken and rat cardiac muscle. J Muscle Res Cell Motil 10(1):85–91

    Article  CAS  PubMed  Google Scholar 

  • Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272

    Article  CAS  PubMed  Google Scholar 

  • Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME (2007) Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach. Stem Cells 25(5):1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Sathaye A, Bursac N, Sheehy S, Tung L (2006) Electrical pacing counteracts intrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J Mol Cell Cardiol 41(4):633–641

    Article  CAS  PubMed  Google Scholar 

  • Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G et al (2008) Calcium handling in human embryonic stem cell-derived cardiomyocytes. Stem Cells 26(8):1961–1972

    Article  CAS  PubMed  Google Scholar 

  • Schaper J, Meiser E, Stämmler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56(3):377–391

    Article  CAS  PubMed  Google Scholar 

  • Scuderi GJ, Butcher J (2017) Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol 5:50

    Article  PubMed  PubMed Central  Google Scholar 

  • Seppet EK, Kaambre T, Sikk P, Tiivel T, Vija H, Tonkonogi M et al (2001) Functional complexes of mitochondria with Ca, MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504(2–3):379–395

    Article  CAS  PubMed  Google Scholar 

  • Shadrin IY, Allen BW, Qian Y, Jackman CP, Carlson AL, Juhas ME et al (2017) Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 8(1):1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiba Y, Fernandes S, Zhu W-Z, Filice D, Muskheli V, Kim J et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siedner S, Krüger M, Schroeter M, Metzler D, Roell W, Fleischmann BK et al (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548(Pt 2):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skelton RJP, Kamp TJ, Elliott DA, Ardehali R (2017) Biomarkers of human pluripotent stem cell-derived cardiac lineages. Trends Mol Med 23(7):651–668

    Article  CAS  PubMed  Google Scholar 

  • Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E et al (2003) Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 285(6):H2355–H2363

    Article  CAS  PubMed  Google Scholar 

  • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Phys 271(5 Pt 2):H2183–H2189

    CAS  Google Scholar 

  • Spach MS, Heidlage JF, Dolber PC, Barr RC (2000) Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ Res 86(3):302–311

    Article  CAS  PubMed  Google Scholar 

  • Spach MS, Heidlage JF, Barr RC, Dolber PC (2004) Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515

    Article  PubMed  Google Scholar 

  • Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ et al (2012) Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 4(130):130ra47

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tam PPL, Loebel DAF (2007) Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 8(5):368–381

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Shigenobu K (1989) Effect of ryanodine on neonatal and adult rat heart: developmental increase in sarcoplasmic reticulum function. J Mol Cell Cardiol 21(12):1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T et al (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Tohyama S, Fujita J, Hishiki T, Matsuura T, Hattori F, Ohno R et al (2016) Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 23(4):663–674

    Article  CAS  PubMed  Google Scholar 

  • Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S et al (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6(8):e23657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uosaki H, Cahan P, Lee DI, Wang S, Miyamoto M, Fernandez L et al (2015) Transcriptional landscape of cardiomyocyte maturation. Cell Rep 13(8):1705–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • VanWinkle WB, Snuggs MB, Buja LM (1996) Cardiogel: a biosynthetic extracellular matrix for cardiomyocyte culture. In Vitro Cell Dev Biol Anim 32(8):478–485

    Article  CAS  PubMed  Google Scholar 

  • Veerman CC, Mengarelli I, Lodder EM, Kosmidis G, Bellin M, Zhang M et al (2017) Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction Disease-causing mutation. J Am Heart Assoc 6(7):e005135

    Article  PubMed  PubMed Central  Google Scholar 

  • van Weeghel M, Abdurrachim D, Nederlof R, Argmann CA, Houtkooper RH, Hagen J et al (2018) Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovasc Res 114(10):1324–1334

    Article  PubMed  Google Scholar 

  • **a Y, Buja LM, Scarpulla RC, McMillin JB (1997) Electrical stimulation of neonatal cardiomyocytes results in the sequential activation of nuclear genes governing mitochondrial proliferation and differentiation. Proc Natl Acad Sci U S A 94(21):11399–11404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka S, Zahanich I, Wersto RP, Boheler KR (2008) Enhanced proliferation of monolayer cultures of embryonic stem (ES) cell-derived cardiomyocytes following acute loss of retinoblastoma. PLoS One 3(12):e3896

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M et al (2008) Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453(7194):524–528

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Pabon L, Murry CE (2014a) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114(3):511–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M et al (2014b) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y et al (2019) Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep 13(4):657–668

    Article  CAS  Google Scholar 

  • Yazawa M, Hsueh B, Jia X, Pasca AM, Bernstein JA, Hallmayer J et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoo N, Baba S, Kaichi S, Niwa A, Mima T, Doi H et al (2009) The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells. Biochem Biophys Res Commun 387(3):482–488

    Article  CAS  PubMed  Google Scholar 

  • You J-O, Rafat M, Ye GJC, Auguste DT (2011) Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett 11(9):3643–3648

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Lan H, El-Battrawy I, Li X, Buljubasic F, Sattler K et al (2018) Ion Channel expression and characterization in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cells Int 2018:6067096

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Pu WT (2016) Recounting cardiac cellular composition. Circ Res 118(3):368–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Zhao M, Mattapally S, Chen S, Zhang J (2018) CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: Remuscularization of injured ventricle. Circ Res 122(1):88–96

    Article  CAS  PubMed  Google Scholar 

  • Zhu W-Z, Santana LF, Laflamme MA (2009) Local control of excitation-contraction coupling in human embryonic stem cell-derived cardiomyocytes. PLoS One 4(4):e5407

    Article  PubMed  PubMed Central  Google Scholar 

  • Zup**er C, Gibbons G, Dutta-Passecker P, Segiser A, Most H, Suter TM (2017) Characterization of cytoskeleton features and maturation status of cultured human iPSC-derived cardiomyocytes. Eur J Histochem 61(2):2763

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Uosaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanthra, N., Uosaki, H. (2023). Reifung von aus pluripotenten Stammzellen gewonnenen Kardiomyozyten und Zukunftsperspektiven für die regenerative Medizin. In: Haider, K.H. (eds) Stammzellen. Springer, Cham. https://doi.org/10.1007/978-3-031-25378-2_14

Download citation

Publish with us

Policies and ethics

Navigation