Nano-scale Surface Modification of Dental Implants: Fabrication

  • Chapter
  • First Online:
Surface Modification of Titanium Dental Implants

Abstract

Due to its suitable mechanical strength, biocompatibility, and chemical properties, Titanium (Ti) and its alloys have been considered the gold-standard biomaterial in dentistry. To improve implant bioactivity and ensure their long-term success, the dental implants have been modified at the macro, micro, and nano scales. So far, the surface modification of dental implants at the nano-scale level has been targeted as a critical feature for peri-implantitis prevention. This chapter describes the latest nanoscale surface modification of dental implants, including physical, chemical, and electrochemical techniques. Furthermore, current technological limitations and future nanoscale surface modification strategies of dental implants are systematically addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 128.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A:

Anatase

AC:

Alternating current

bFGF:

Fibroblast growth factor

CAD:

Computer-assisted design

CaP:

Calcium phosphate

DC sputtering:

Direct current sputtering

DCD:

Discrete crystalline deposition

DDS:

Drug delivery systems

DLIP:

Direct laser interface pattering

EA:

Electrochemical anodization

GO:

Graphene oxide

HA:

Hydroxyapatite

LBL:

Layer-by-layer

LPD:

Laser pulse deposition

MAPLE:

Matrix-assisted pulsed laser evaporation

NR:

Nanorod

PDA:

Polydopamine

PTL:

Phase transition lysozyme

PVD:

Physical vapor deposition

PVDMS:

Physical vapor deposition magnetron sputtering

R:

Rutile

Ra:

Profile roughness average

RF sputtering:

Radio frequency sputtering

RGDC:

Arginine-glycine-aspartic acid-cysteine

Sa:

Area roughness average

SA:

Supramolecular assembly

TA:

Tannic acid

Ti:

Titanium

TNT:

TiO2-based nanotubes

TNWs:

Titanium nanowires

TPS:

Ti plasma-sprayed

References

  • Abraham, C. M. (2014). A brief historical perspective on dental implants, their surface coatings and treatments. The Open Dentistry Journal, 8, 50–55.

    Article  Google Scholar 

  • Aguilar-Morales, A. I., Alamri, S., Kunze, T., et al. (2018). Influence of processing parameters on surface texture homogeneity using Direct Laser Interference Patterning. Optics & Laser Technology, 107, 216–227.

    Article  Google Scholar 

  • Albashari, A. A., He, Y., Albaadani, M. A., et al. (2021). Titanium nanotube modified with silver cross-linked basic fibroblast growth factor improves osteoblastic activities of dental pulp stem cells and antibacterial effect. Frontiers in Cell and Developmental Biology, 9, 654654.

    Article  Google Scholar 

  • Alipal, J., Lee, T. C., Koshy, P., et al. (2021). Evolution of anodised titanium for implant applications. Heliyon, 7(7), e07408.

    Article  Google Scholar 

  • Arkusz, K., Nycz, M., Paradowska, E., et al. (2021). Electrochemical stability of TiO2 nanotubes deposited with silver and gold nanoparticles in aqueous environment. Environmental Nanotechnology, Monitoring & Management, 15, 100401.

    Article  Google Scholar 

  • Calderon, S., Alves, C. F. A., Manninen, N. K., et al. (2019). Electrochemical corrosion of nano-structured magnetron-sputtered coatings. Coatings, 9(10), 682.

    Article  Google Scholar 

  • Cao, H., Liu, X., Meng, F., et al. (2011). Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials, 32(3), 693–705.

    Article  Google Scholar 

  • Chen, Q., & Thouas, G. A. (2015). Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 87, 1–57.

    Article  Google Scholar 

  • Chen, X., Cai, K., Fang, J., et al. (2013). Fabrication of selenium-deposited and chitosan-coated titania nanotubes with anticancer and antibacterial properties. Colloids and surfaces B, Biointerfaces, 103, 149–157.

    Article  Google Scholar 

  • Cheng, Y., Yang, H., Yang, Y., et al. (2018). Progress in TiO2 nanotube coatings for biomedical applications: A review. Journal of Materials Chemistry B, 6(13), 1862–1886.

    Article  Google Scholar 

  • Chodun, R., Dypa, M., Wicher, B., et al. (2022). The sputtering of titanium magnetron target with increased temperature in reactive atmosphere by gas injection magnetron sputtering technique. Applied Surface Science, 574, 151597.

    Article  Google Scholar 

  • Cristescu, R., Popescu, C., Socol, G., et al. (2011). Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE. Applied Surface Science, 257(12), 5287–5292.

    Article  Google Scholar 

  • Cristescu, R., Negut, I., Visan, A. I., et al. (2020). Matrix-assisted pulsed laser evaporation-deposited rapamycin thin films maintain antiproliferative activity. International Journal of Bioprinting, 6(1), 188.

    Article  Google Scholar 

  • Cunha, A., Oliveira, V., & Vilar, R. (2016). Ultrafast laser surface texturing of titanium alloys. In Laser surface modification of biomaterials (pp. 301–322). Woodhead Publishing.

    Chapter  Google Scholar 

  • De Bonis, A., & Teghil, R. (2020). Ultra-short pulsed laser deposition of oxides, borides and carbides of transition elements. Coatings, 10(5), 501.

    Article  Google Scholar 

  • De Bruyn, H., Christiaens, V., Doornewaard, R., et al. (2017). Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontology 2000, 73(1), 218–227.

    Article  Google Scholar 

  • Diaz-Gomez, L., Concheiro, A., & Alvarez-Lorenzo, C. (2018). Functionalization of titanium implants with phase-transited lysozyme for gentle immobilization of antimicrobial lysozyme. Applied Surface Science, 452, 32–42.

    Article  Google Scholar 

  • Dohan Ehrenfest, D. M., Coelho, P. G., Kang, B. S., et al. (2010). Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends in Biotechnology, 28(4), 198–206.

    Article  Google Scholar 

  • Duan, M., Wu, X., Yuan, L., et al. (2019). Fabrication and in vitro bioactivity of robust hydroxyapatite coating on porous titanium implant. Chemical Research in Chinese Universities, 35(4), 686–692.

    Article  Google Scholar 

  • Esteves, G. M., Esteves, J., Resende, M., et al. (2022). Antimicrobial and antibiofilm coating of dental implants-past and new perspectives. Antibiotics (Basel, Switzerland), 11(2), 235.

    Google Scholar 

  • Fadoju, O., Ogunsuyi, O., Akanni, O., et al. (2019). Evaluation of cytogenotoxicity and oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles. Environmental Toxicology and Pharmacology, 70, 103204.

    Article  Google Scholar 

  • Farronato, D., Mangano, F., Briguglio, F., et al. (2014). Influence of Laser-Lok surface on immediate functional loading of implants in single-tooth replacement: A 2-year prospective clinical study. The International Journal of Periodontics & Restorative Dentistry, 34(1), 79–89.

    Article  Google Scholar 

  • Flores, C. Y., Miñán, A. G., Grillo, C. A., et al. (2013). Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Applied Materials & Interfaces, 5(8), 3149–3159.

    Article  Google Scholar 

  • Geetha, M., Singh, A. K., Asokamani, R., et al. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Progress in Materials Science, 54(3), 397–425.

    Article  Google Scholar 

  • Gudmundsson, J. T., & Lundin, D. (2020). 1 – Introduction to magnetron sputtering. In D. Lundin et al. (Eds.), High power impulse magnetron sputtering (pp. 1–48). Elsevier.

    Google Scholar 

  • Gulati, K. (2021). Supramolecular surface modifications of titanium implants. In Supramolecular chemistry in corrosion and biofouling protection (pp. 393–409). CRC Press.

    Chapter  Google Scholar 

  • Gulati, K., Santos, A., Findlay, D., et al. (2015). Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. The Journal of Physical Chemistry C, 119(28), 16033–16045.

    Article  Google Scholar 

  • Gulati, K., Li, T., & Ivanovski, S. (2018a). Consume or conserve: Microroughness of titanium implants toward fabrication of dual micro–nanotopography. ACS Biomaterials Science & Engineering, 4(9), 3125–3131.

    Article  Google Scholar 

  • Gulati, K., Moon, H. J., Li, T., et al. (2018b). Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity. Materials Science & Engineering C, Materials for Biological Applications, 91, 624–630.

    Article  Google Scholar 

  • Gulati K, Zhang Y, Di P, et al. (2021) Research to clinics: Clinical translation considerations for anodized nano-engineered titanium implants. ACS Biomaterials Science & Engineering, 8(10):4077-4091.

    Google Scholar 

  • Gulati, K., Martinez, R. D. O., Czerwiński, M., et al. (2022). Understanding the influence of electrolyte aging in electrochemical anodization of titanium. Advances in Colloid and Interface Science, 302, 102615.

    Article  Google Scholar 

  • Gunputh, U. F., Le, H., Handy, R. D., et al. (2018). Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Materials Science and Engineering: C, 91, 638–644.

    Article  Google Scholar 

  • Guo, C. Y., Matinlinna, J. P., & Tang, A. T. H. (2012). Effects of surface charges on dental implants: Past, present, and future. International Journal of Biomaterials, 2012, 5–5.

    Article  Google Scholar 

  • Guo, T., Gulati, K., Arora, H., et al. (2021a). Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomaterialia, 124, 33–49.

    Article  Google Scholar 

  • Guo, T., Gulati, K., Arora, H., et al. (2021b). Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dental Materials, 37(5), 816–831.

    Article  Google Scholar 

  • Guo, T., Oztug, N. A. K., Han, P., et al. (2021c). Old is gold: Electrolyte aging influences the topography, chemistry, and bioactivity of anodized TiO2 Nanopores. ACS Applied Materials & Interfaces, 13(7), 7897–7912.

    Article  Google Scholar 

  • Hartjen, P., Nada, O., Silva, T. G., et al. (2017). Cytocompatibility of direct laser interference-patterned titanium surfaces for implants. In vivo (Athens, Greece), 31(5), 849–854.

    Google Scholar 

  • Hindy, A., Farahmand, F., & Tabatabaei, F. S. (2017). In vitro biological outcome of laser application for modification or processing of titanium dental implants. Lasers in Medical Science, 32(5), 1197–1206.

    Article  Google Scholar 

  • Hsu, Y., Hsu, H.-L., & Leu, J. (2012). TiO2 nanowires on anodic TiO2 nanotube arrays (TNWs/TNAs): Formation mechanism and photocatalytic performance. Journal of the Electrochemical Society, 159, H722.

    Article  Google Scholar 

  • Hu, Y., Cai, K., Luo, Z., et al. (2012). TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomaterialia, 8(1), 439–448.

    Article  Google Scholar 

  • Indira, K., KamachiMudali, U., & Rajendran, N. (2014). In vitro bioactivity and corrosion resistance of Zr incorporated TiO2 nanotube arrays for orthopaedic applications. Applied Surface Science, 316, 264–275.

    Article  Google Scholar 

  • Indira, K., Mudali, U. K., Nishimura, T., et al. (2015). A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications. Journal of Bio- and Tribo-Corrosion, 1(4), 28.

    Article  Google Scholar 

  • Ingle, A. P., Duran, N., & Rai, M. (2014). Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review. Applied Microbiology and Biotechnology, 98(3), 1001–1009.

    Article  Google Scholar 

  • Jarosz, M., Syrek, K., Kapusta-Kołodziej, J., et al. (2015). Heat treatment effect on crystalline structure and photoelectrochemical properties of anodic TiO2 nanotube arrays formed in ethylene glycol and glycerol based electrolytes. The Journal of Physical Chemistry C, 119(42), 24182–24191.

    Article  Google Scholar 

  • Jilani, A., Abdel-Wahab, M. S., & HosnyHammad, A. (2017). Advance deposition techniques for thin film and coating. In Modern technologies for creating the thin-film systems and coatings. InTech.

    Google Scholar 

  • **, R., Fan, H., Liu, Y., et al. (2016). Formation mechanism of lotus-root-shaped nanostructure during two-step anodization. Electrochimica Acta, 188, 421–427.

    Article  Google Scholar 

  • **g, W., Haowen, F., He, Z., et al. (2016). Anodizing process of titanium and formation mechanism of anodic TiO2 nanotubes. Progress in Chemistry – Bei**g, 28, 284–295.

    Google Scholar 

  • Jordana, F., Susbielles, L., & Colat-Parros, J. (2018). Periimplantitis and implant body roughness: A systematic review of literature. Implant Dentistry, 27(6), 672–681.

    Article  Google Scholar 

  • Kapusta-Kołodziej, J., Tynkevych, O., Pawlik, A., et al. (2014). Electrochemical growth of porous titanium dioxide in a glycerol-based electrolyte at different temperatures. Electrochimica Acta, 144, 127–135.

    Article  Google Scholar 

  • Katunar, M. R., Gomez Sanchez, A., Santos Coquillat, A., et al. (2017). In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications. Materials Science and Engineering: C, 75, 957–968.

    Article  Google Scholar 

  • Kim, K.-H., & Ramaswamy, N. (2009). Electrochemical surface modification of titanium in dentistry. Dental Materials Journal, 28(1), 20–36.

    Article  Google Scholar 

  • Kim, J., Kim, B., Oh, C., et al. (2018). Effects of NH(4)F and distilled water on structure of pores in TiO(2) nanotube arrays. Scientific Reports, 8(1), 12487–12487.

    Article  Google Scholar 

  • Krishnakumar, S., & Senthilvelan, T. (2021). Polymer composites in dentistry and orthopedic applications-a review. Materials Today: Proceedings, 46, 9707–9713.

    Google Scholar 

  • Krýsa, J., Krýsová, H., Hubička, Z., et al. (2019). Transparent rutile TiO2 films prepared by thermal oxidation of sputtered Ti on FTO glass. Photochemical & Photobiological Sciences, 18(4), 891–896.

    Article  Google Scholar 

  • Kuczyńska, D., Kwaśniak, P., Pisarek, M., et al. (2018). Influence of surface pattern on the biological properties of Ti grade 2. Materials Characterization, 135, 337–347.

    Article  Google Scholar 

  • Kuczyńska-Zemła, D., Sotniczuk, A., Pisarek, M., et al. (2021). Corrosion behavior of titanium modified by direct laser interference lithography. Surface and Coatings Technology, 418, 127219.

    Article  Google Scholar 

  • Kumeria, T., Mon, H., Aw, M. S., et al. (2015). Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids and Surfaces B, Biointerfaces, 130, 255–263.

    Article  Google Scholar 

  • Lai, Y.-S., Cheng, C.-T., Liou, J.-L., et al. (2021). The ZnO–Au-Titanium oxide nanotubes (TiNTs) composites photocatalysts for CO2 reduction application. Ceramics International, 47(21), 30020–30029.

    Article  Google Scholar 

  • Lazarouk, S. K., Sasinovich, D. A., Kupreeva, O. V., et al. (2012). Effect of the electrolyte temperature on the formation and structure of porous anodic titania film. Thin Solid Films, 526, 41–46.

    Article  Google Scholar 

  • Le Guehennec, L., Soueidan, A., Layrolle, P., et al. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials: Official Publication of the Academy of Dental Materials, 23(7), 844–854.

    Article  Google Scholar 

  • Lee, K., Mazare, A., & Schmuki, P. (2014). One-dimensional titanium dioxide nanomaterials: Nanotubes. Chemical Reviews, 114(19), 9385–9454.

    Article  Google Scholar 

  • Li, M., Liu, Q., Jia, Z., et al. (2015). Polydopamine-induced nanocomposite Ag/CaP coatings on the surface of titania nanotubes for antibacterial and osteointegration functions. Journal of Materials Chemistry B, 3(45), 8796–8805.

    Article  Google Scholar 

  • Li, J., Tan, L., Liu, X., et al. (2017). Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS Nano, 11(11), 11250–11263.

    Article  Google Scholar 

  • Li, T., Gulati, K., Wang, N., et al. (2018). Bridging the gap: Optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation. Journal of Colloid and Interface Science, 529, 452–463.

    Article  Google Scholar 

  • Li, H., Gao, C., Tang, L., et al. (2020). Lysozyme (Lys), tannic acid (TA), and graphene oxide (GO) thin coating for antibacterial and enhanced osteogenesis. ACS Applied Bio Materials, 3(1), 673–684.

    Article  Google Scholar 

  • Lin, R., Wang, Z., Li, Z., et al. (2022). A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Materials Today Bio, 15, 100330.

    Article  Google Scholar 

  • López-Valverde, N., Macedo-de-Sousa, B., López-Valverde, A., et al. (2021). Effectiveness of antibacterial surfaces in Osseointegration of titanium dental implants: A systematic review. Antibiotics (Basel, Switzerland), 10(4), 360.

    Google Scholar 

  • Lyndon, J. A., Boyd, B. J., & Birbilis, N. (2014). Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. Journal of Controlled Release, 179, 63–75.

    Article  Google Scholar 

  • Macak, J. M., Tsuchiya, H., Ghicov, A., et al. (2007). TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Current Opinion in Solid State and Materials Science, 11(1), 3–18.

    Article  Google Scholar 

  • Makvandi, P., Gu, J. T., Zare, E. N., et al. (2020). Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomaterialia, 101, 69–101.

    Article  Google Scholar 

  • Mathieu, V., Vayron, R., Richard, G., et al. (2014). Biomechanical determinants of the stability of dental implants: Influence of the bone–implant interface properties. Journal of Biomechanics, 47(1), 3–13.

    Article  Google Scholar 

  • Mazare, A., Totea, G., Burnei, C., et al. (2016). Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corrosion Science, 103, 215–222.

    Article  Google Scholar 

  • Michalska-Domańska, M., Nyga, P., & Czerwiński, M. (2018). Ethanol-based electrolyte for nanotubular anodic TiO2 formation. Corrosion Science, 134, 99–102.

    Article  Google Scholar 

  • Michalska-Domańska, M., Łazińska, M., Łukasiewicz, J., et al. (2020). Self-organized anodic oxides on titanium alloys prepared from glycol- and glycerol-based electrolytes. Materials, 13(21), 4743.

    Article  Google Scholar 

  • Micheletti, C., Suriano, R., Grandfield, K., et al. (2021). Drug release from polymer-coated TiO2 nanotubes on additively manufactured Ti-6Al-4V bone implants: A feasibility study. Nano Express, 2(1), 010018.

    Article  Google Scholar 

  • Miroiu, F. M., Socol, G., Visan, A., et al. (2010). Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by Matrix Assisted Pulsed Laser Evaporation. Materials Science and Engineering B, Solid-State Materials for Advanced Technology, 169(1–3), 151–158.

    Article  Google Scholar 

  • Naduvath, J., Bhargava, P., & Mallick, S. (2015). Mechanism of titania nanograss formation during anodization. Chemical Physics Letters, 626, 15–19.

    Article  Google Scholar 

  • Nanthagopal, K., Ashok, B., Tamilarasu, A., et al. (2017). Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Conversion and Management, 146, 8–19.

    Article  Google Scholar 

  • Navarro, M., Michiardi, A., Castaño, O., et al. (2008). Biomaterials in orthopaedics. Journal of the Royal Society Interface, 5(27), 1137–1158.

    Article  Google Scholar 

  • Nevins, M., Kim, D. M., Jun, S. H., et al. (2010). Histologic evidence of a connective tissue attachment to laser microgrooved abutments: A canine study. The International Journal of Periodontics & Restorative Dentistry, 30(3), 245–255.

    Google Scholar 

  • Nicolas-Silvente, A. I., Velasco-Ortega, E., Ortiz-Garcia, I., et al. (2020). Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel), 13(2), 314.

    Article  Google Scholar 

  • Noronha, V. T., Paula, A. J., Durán, G., et al. (2017). Silver nanoparticles in dentistry. Dental Materials, 33(10), 1110–1126.

    Article  Google Scholar 

  • Oluwatosin Abegunde, O., Titilayo Akinlabi, E., Philip Oladijo, O., et al. (2019). Overview of thin film deposition techniques (Vol. 6, pp. 174–199). AIMS Materials Science.

    Google Scholar 

  • Paital, S. R., & Dahotre, N. B. (2009). Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, 66(1), 1–70.

    Article  Google Scholar 

  • Pashchanka, M. (2021). Conceptual progress for explaining and predicting self-organization on anodized aluminum surfaces. Nanomaterials (Basel), 11(9), 2271.

    Article  Google Scholar 

  • Penning, F. M. (1936). Die glimmentladung bei niedrigem druck zwischen koaxialen zylindern in einem axialen magnetfeld. Physica, 3(9), 873–894.

    Article  Google Scholar 

  • Perumal, A., Kannan, S., & Nallaiyan, R. (2021). Silver nanoparticles incorporated polyaniline on TiO2 nanotube arrays: A nanocomposite platform to enhance the biocompatibility and antibiofilm. Surfaces and Interfaces, 22, 100892.

    Article  Google Scholar 

  • Perveen, A., Molardi, C., & Fornaini, C. (2018). Applications of laser welding in dentistry: A state-of-the-art review. Micromachines (Basel), 9(5), 209.

    Article  Google Scholar 

  • Popescu, R. C., Fufa, O., Apostol, A., et al. (2017). Antimicrobial thin coatings prepared by laser processing. In Nanostructures for antimicrobial therapy (pp. 223–236). Elsevier.

    Chapter  Google Scholar 

  • Priyadarsini, S., Mukherjee, S., & Mishra, M. (2018). Nanoparticles used in dentistry: A review. Journal of Oral Biology and Craniofacial Research, 8(1), 58–67.

    Article  Google Scholar 

  • Pye, A. D., Lockhart, D. E., Dawson, M. P., et al. (2009). A review of dental implants and infection. The Journal of Hospital Infection, 72(2), 104–110.

    Article  Google Scholar 

  • Qadir, M., Li, Y., & Wen, C. (2019). Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review. Acta Biomaterialia, 89, 14–32.

    Article  Google Scholar 

  • Qadir, M., Li, Y., Biesiekierski, A., et al. (2021). Surface characterization and biocompatibility of hydroxyapatite coating on anodized TiO2 nanotubes via PVD magnetron sputtering. Langmuir, 37(16), 4984–4996.

    Article  Google Scholar 

  • Qu, Z., Rausch-Fan, X., Wieland, M., et al. (2007). The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification. Journal of Biomedical Materials Research Part A, 82A(3), 658–668.

    Article  Google Scholar 

  • Rădulescu, D., Grumezescu, V., Andronescu, E., et al. (2016). Biocompatible cephalosporin-hydroxyapatite-poly(lactic-co-glycolic acid)-coatings fabricated by MAPLE technique for the prevention of bone implant associated infections. Applied Surface Science, 374, 387–396.

    Article  Google Scholar 

  • Regonini, D., Bowen, C. R., Jaroenworaluck, A., et al. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377–406.

    Article  Google Scholar 

  • Roy, P., Berger, S., & Schmuki, P. (2011). TiO2 nanotubes. Synthesis and Applications., 50(13), 2904–2939.

    Google Scholar 

  • Rupp, F., Liang, L., Geis-Gerstorfer, J., et al. (2018). Surface characteristics of dental implants: A review. Dental Materials, 34(1), 40–57.

    Article  Google Scholar 

  • Safavi, M. S., Surmeneva, M. A., Surmenev, R. A., et al. (2021). RF-magnetron sputter deposited hydroxyapatite-based composite & multilayer coatings: A systematic review from mechanical, corrosion, and biological points of view. Ceramics International, 47(3), 3031–3053.

    Article  Google Scholar 

  • Safi, I. N., Hussein, B. M. A., Aljudy, H. J., et al. (2021). Effects of long durations of RF-magnetron sputtering deposition of hydroxyapatite on titanium dental implants. European Journal of Dentistry, 15(3), 440–447.

    Article  Google Scholar 

  • Santos-Coquillat, A., Martínez-Campos, E., Mohedano, M., et al. (2018). In vitro and in vivo evaluation of PEO-modified titanium for bone implant applications. Surface and Coatings Technology, 347, 358–368.

    Article  Google Scholar 

  • Santos-Coquillat, A., Mohedano, M., Martinez-Campos, E., et al. (2019). Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Materials Science and Engineering: C, 97, 738–752.

    Article  Google Scholar 

  • Santos-Coquillat, A., Martínez-Campos, E., Mora Sánchez, H., et al. (2021). Hybrid functionalized coatings on metallic biomaterials for tissue engineering. Surface and Coatings Technology, 422, 127508.

    Article  Google Scholar 

  • Shimizu, H., Ohashi, K., Utoh, R., et al. (2009). Bioengineering of a functional sheet of islet cells for the treatment of diabetes mellitus. Biomaterials, 30(30), 5943–5949.

    Article  Google Scholar 

  • Smeets, R., Stadlinger, B., Schwarz, F., et al. (2016). Impact of dental implant surface modifications on osseointegration. BioMed Research International, 2016, 16.

    Article  Google Scholar 

  • Sola, D., Milles, S., & Lasagni, A. F. (2021). Direct laser interference patterning of diffraction gratings in Safrofilcon-A hydrogel: Fabrication and hydration assessment. Polymers, 13(5), 679.

    Article  Google Scholar 

  • Sopha, H., Hromádko, L., Nechvilova, K., et al. (2015). Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. Journal of Electroanalytical Chemistry, 759, 122–128.

    Article  Google Scholar 

  • Souza, J. C. M., Sordi, M. B., Kanazawa, M., et al. (2019). Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomaterialia, 94, 112–131.

    Article  Google Scholar 

  • Subramani, K., Mathew, R. T., & Pachauri, P. (2018). Chapter 6 – Titanium surface modification techniques for dental implants—From microscale to nanoscale. In K. Subramani & W. Ahmed (Eds.), Emerging nanotechnologies in dentistry (2nd ed., pp. 99–124). William Andrew Publishing.

    Chapter  Google Scholar 

  • Suhadolnik, L., Marinko, Ž., Ponikvar-Svet, M., et al. (2020). Influence of anodization-electrolyte aging on the photocatalytic activity of TiO2 nanotube arrays. The Journal of Physical Chemistry C, 124(7), 4073–4080.

    Article  Google Scholar 

  • Surmenev, R. A. (2012). A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surface and Coatings Technology, 206(8), 2035–2056.

    Article  Google Scholar 

  • Thukkaram, M., Vaidulych, M., Kylián, O., et al. (2021). Biological activity and antimicrobial property of Cu/a-C:H nanocomposites and nanolayered coatings on titanium substrates. Materials Science and Engineering: C, 119, 111513.

    Article  Google Scholar 

  • Toma, B. F., Baciu, R. E., Be**ariu, C., et al. (2018). Researches on the improvement of the bioactivity of TiO2 deposits, obtained by magnetron sputtering – DC. IOP Conference Series: Materials Science and Engineering, 374, 012017.

    Article  Google Scholar 

  • Traid, H. D., Vera, M. L., Ares, A. E., et al. (2015). Porous titanium dioxide coatings obtained by anodic oxidation for photocatalytic applications. Procedia Materials Science, 9, 619–626.

    Article  Google Scholar 

  • Wang, L. S., **ao, M. W., Huang, X. J., et al. (2009). Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. Journal of Hazardous Materials, 161(1), 49–54.

    Article  Google Scholar 

  • Wang, X., Xu, S., Zhou, S., et al. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127–141.

    Article  Google Scholar 

  • Wang, Y.-H., Rahman, K. H., Wu, C.-C., et al. (2020). A review on the pathways of the improved structural characteristics and photocatalytic performance of titanium dioxide (TiO2) thin films fabricated by the magnetron-sputtering technique. Catalysts, 10(6), 598.

    Article  Google Scholar 

  • Wennerberg, A., & Albrektsson, T. (2009). Effects of titanium surface topography on bone integration: A systematic review. Clinical Oral Implants Research, 20(s4), 172–184.

    Article  Google Scholar 

  • Wirth, J., Tahriri, M., Khoshroo, K., et al. (2017). 6 - Surface modification of dental implants. In L. Tayebi & K. Moharamzadeh (Eds.), Biomaterials for oral and dental tissue engineering (pp. 85–96). Woodhead Publishing.

    Chapter  Google Scholar 

  • Yan, R., Luo, D., Huang, H., et al. (2018). Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold. Scientific Reports, 8(1), 750.

    Article  Google Scholar 

  • Yang, B., Ng, C.-K., Fung, M. K., et al. (2011). Annealing study of titanium oxide nanotube arrays. Materials Chemistry and Physics, 130, 1227–1231.

    Article  Google Scholar 

  • Yang, Y., Ao, H., Wang, Y., et al. (2016). Cytocompatibility with osteogenic cells and enhanced in vivo anti-infection potential of quaternized chitosan-loaded titania nanotubes. Bone Research, 4(1), 16027.

    Article  Google Scholar 

  • Yang, L., Li, L., Li, H., et al. (2022). Layer-by-layer assembled smart antibacterial coatings via mussel-inspired polymerization and dynamic covalent chemistry. Advanced Healthcare Materials, 11(12), 2200112.

    Article  Google Scholar 

  • Yeo, I.-S. L. (2019). Modifications of dental implant surfaces at the micro- and nano-level for enhanced osseointegration. Materials (Basel), 13(1), 89.

    Article  MathSciNet  Google Scholar 

  • Yetim, A. F. (2010). Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions. Surface and Coatings Technology, 205(6), 1757–1763.

    Article  Google Scholar 

  • Yu, W. Q., Zhang, Y. L., Jiang, X. Q., et al. (2010). In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 16(7), 624–630.

    Article  Google Scholar 

  • Zhang, C., Wang, S., Huo, H., et al. (2012). Preparation of helical titania nanotubes using a sol–gel transcription approach. Materials Letters, 88, 23–26.

    Article  Google Scholar 

  • Zhang, X., Gui, Y., & Dong, X. (2016a). Preparation and application of TiO2 nanotube array gas sensor for SF6-insulated equipment detection: A review. Nanoscale Research Letters, 11(1), 302.

    Article  Google Scholar 

  • Zhang, Y., Chen, L., Liu, C., et al. (2016b). Self-assembly chitosan/gelatin composite coating on icariin-modified TiO2 nanotubes for the regulation of osteoblast bioactivity. Materials & Design, 92, 471–479.

    Article  Google Scholar 

  • Zhang, Y., Gulati, K., Li, Z., et al. (2021). Dental implant nano-engineering: Advances, limitations and future directions. Nanomaterials (Basel), 11(10), 2489.

    Article  Google Scholar 

  • Zhao, G., Schwartz, Z., Wieland, M., et al. (2005). High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A, 74(1), 49–58.

    Article  Google Scholar 

  • Zhao, S., Li, C., Wei, T., et al. (2018). A mathematical model for initiation and growth of anodic titania nanotube embryos under compact oxide layer. Electrochemistry Communications, 91, 60–65.

    Article  Google Scholar 

  • Zhou, Q., Niu, D., Feng, X., et al. (2020). Debunking the effect of water content on anodizing current: Evidence against the traditional dissolution theory. Electrochemistry Communications, 119, 106815.

    Article  Google Scholar 

  • Zwahr, C., Günther, D., Brinkmann, T., et al. (2017). Laser surface pattering of titanium for improving the biological performance of dental implants. Advanced Healthcare Materials, 6(3), 300.

    Google Scholar 

  • Zwahr, C., Welle, A., Weingärtner, T., et al. (2019). Ultrashort pulsed laser surface patterning of titanium to improve Osseointegration of dental implants. Advanced Engineering Materials, 21(12), 1900639.

    Google Scholar 

Download references

Acknowledgments

The authors cordially acknowledge the National Centre for Research and Development (Poland) for financed support made under the program LIDER IX(Nr LIDER/50/0199/L-9/17/NCBR/2018). A. Santos-Coquillat is grateful for financial support from Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Spain (Sara Borrell Fellowship grant CD19/00136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Michalska-Domańska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Olmo, R., Czerwiński, M., Santos-Coquillat, A., Dubey, V., Dhoble, S.J., Michalska-Domańska, M. (2023). Nano-scale Surface Modification of Dental Implants: Fabrication. In: Gulati, K. (eds) Surface Modification of Titanium Dental Implants. Springer, Cham. https://doi.org/10.1007/978-3-031-21565-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21565-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21564-3

  • Online ISBN: 978-3-031-21565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation