Implant Surface Modifications and Osseointegration

  • Chapter
  • First Online:
Biomaterials for Implants and Scaffolds

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 8))

Abstract

Osseointegration and osteogenic differentiation are important determinants of clinical outcomes involving implants in orthopaedics and dentistry. Implant surface microstructure and hydrophilicity are known to influence these properties. Recent research has focused on several modifications of surface topography and chemistry aimed at improving bone formation to achieve faster and better healing. Topographically modified titanium implant surfaces, like the sandblasted, large-grit, acid-etched (SLA) surface and chemically modified hydrophilic SLA (modSLA) surface, have shown promising results when compared with smooth/polished titanium surfaces. Although most studies consider an average roughness (Ra) of 1–1.5 μm to be favourable for bone formation, there is no consensus regarding the appropriate roughness and chemical modifications necessary to achieve optimal osseointegration. Studies on microstructurally modified surfaces have revealed intricate details pertaining to the molecular interactions of osteogenic cells with implant surfaces. The in vivo and in vitro findings from these studies highlight the ability of modified titanium surfaces to support the establishment of a native osteogenic niche for promoting bone formation on the implant surfaces. Improved osteogenic properties of modified surfaces are evidenced in vitro by the differential regulation of the molecular transcriptome on such surfaces. Recent studies indicate that post-transcriptional modulators like microRNAs also play an important role in osteogenic regulation on implant surfaces. In this chapter, we discuss the current concepts and considerations in orthopaedic and dental implant research and the new knowledge in the field, which will assist in the development of novel approaches and designs of future implant devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Branemark R, Branemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181

    Google Scholar 

  2. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902

    Article  Google Scholar 

  3. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170

    Article  Google Scholar 

  4. Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hjorting-Hansen E (1995) Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits. J Biomed Mater Res 29(10):1223–1231

    Article  Google Scholar 

  5. Wennerberg A, Albrektsson T, Johansson C, Andersson B (1996) Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 17(1):15–22

    Article  Google Scholar 

  6. Gotfredsen K, Nimb L, Hjorting-Hansen E, Jensen JS, Holmen A (1992) Histomorphometric and removal torque analysis for TiO2-blasted titanium implants. An experimental study on dogs. Clin Oral Implants Res 3(2):77–84

    Article  Google Scholar 

  7. Bristow CM, Cleevely RJ (2005) Scientific enquiry in late 18th century Cornwall and the discovery of titanium. In: Brånemark P-I (ed) The osseointegration book: from calvarium to calcaneus. Quintessenz Verlags-GmbH, Berlin, pp 1–11

    Google Scholar 

  8. McCracken M (1999) Dental implant materials: commercially pure titanium and titanium alloys. J Prosthodont 8(1):40–43

    Article  Google Scholar 

  9. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10(Suppl 2):S96–S101

    Google Scholar 

  10. Hemlata Garg GB, Garg A (2012) Implant surface modifications: a review. J Clin Diagn Res 6(2):319–324

    Google Scholar 

  11. Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J (2004) Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 25(18):4087–4103

    Article  Google Scholar 

  12. Cochran DL, Nummikoski PV, Higginbottom FL, Hermann JS, Makins SR, Buser D (1996) Evaluation of an endosseous titanium implant with a sandblasted and acid-etched surface in the canine mandible: radiographic results. Clin Oral Implants Res 7(3):240–252

    Article  Google Scholar 

  13. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20:172–184

    Article  Google Scholar 

  14. Zeng H, Du X-W, Singh SC, Kulinich SA, Yang S, He J, Cai W (2012) Nanomaterials via laser ablation/irradiation in liquid: a review. Adv Funct Mater 22(7):1333–1353

    Article  Google Scholar 

  15. Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, Ivanovski S (2011) Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 22(4):365–372

    Article  Google Scholar 

  16. Mardas N, Schwarz F, Petrie A, Hakimi AR, Donos N (2011) The effect of SLActive surface in guided bone formation in osteoporotic-like conditions. Clin Oral Implants Res 22(4):406–415

    Article  Google Scholar 

  17. Linares A, Mardas N, Dard M, Donos N (2011) Effect of immediate or delayed loading following immediate placement of implants with a modified surface. Clin Oral Implants Res 22(1):38–46

    Article  Google Scholar 

  18. Ivanovski S, Hamlet S, Salvi GE, Huynh-Ba G, Bosshardt DD, Lang NP, Donos N (2011) Transcriptional profiling of osseointegration in humans. Clin Oral Implants Res 22(4):373–381

    Article  Google Scholar 

  19. Guo CY, Matinlinna JP, Tang AT (2012) Effects of surface charges on dental implants: past, present, and future. Int J Biomater 2012:381535

    Article  Google Scholar 

  20. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 76(2):323–334

    Article  Google Scholar 

  21. Ellingsen JE (1995) Pre-treatment of titanium implants with fluoride improves their retention in bone. J Mater Sci Mater Med 6(12):749–753

    Article  Google Scholar 

  22. Wennerberg A, Albrektsson T, Andersson B, Krol JJ (1995) A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 6(1):24–30

    Article  Google Scholar 

  23. Wennerberg A, Hallgren C, Johansson C, Danelli S (1998) A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin Oral Implants Res 9(1):11–19

    Article  Google Scholar 

  24. Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD (2000) Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15(5):675–690

    Google Scholar 

  25. Wennerberg A, Albrektsson T (2000) Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 15(3):331–344

    Google Scholar 

  26. Shalabi MM, Gortemaker A, Van’t Hof MA, Jansen JA, Creugers NH (2006) Implant surface roughness and bone healing: a systematic review. J Dent Res 85(6):496–500

    Article  Google Scholar 

  27. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD (2011) Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 22(4):349–356

    Article  Google Scholar 

  28. Hamlet S, Alfarsi M, George R, Ivanovski S (2012) The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression. Clin Oral Implants Res 23(5):584–590

    Article  Google Scholar 

  29. de Oliveira PT, Nanci A (2004) Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. Biomaterials 25(3):403–413

    Article  Google Scholar 

  30. Wennerberg A, Galli S, Albrektsson T (2011) Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin Cosmet Investig Dent 3(1):59–67

    Article  Google Scholar 

  31. Wennerberg A, Svanborg LM, Berner S, Andersson M (2012) Spontaneously formed nanostructures on titanium surfaces. Clin Oral Implants Res 24(2):203–209

    Article  Google Scholar 

  32. Chakravorty N, Hamlet S, Jaiprakash A, Crawford R, Oloyede A, Alfarsi M, **ao Y, Ivanovski S (2013) Pro-osteogenic topographical cues promote early activation of osteoprogenitor differentiation via enhanced TGFbeta, Wnt, and Notch signaling. Clin Oral Implants Res 2013:1–12

    Google Scholar 

  33. Mathieu PS, Loboa EG (2012) Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng B Rev 18(6):436–444

    Article  Google Scholar 

  34. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83(7):529–533

    Article  Google Scholar 

  35. Baier RE, Meyer AE (1988) Future directions in surface preparation of dental implants. J Dent Educ 52(12):788–791

    Google Scholar 

  36. Vlacic-Zischke J, Hamlet SM, Friis T, Tonetti MS, Ivanovski S (2011) The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFbeta/BMP signalling in osteoblasts. Biomaterials 32(3):665–671

    Article  Google Scholar 

  37. Olivares-Navarrete R, Hyzy SL, Hutton DL, Erdman CP, Wieland M, Boyan BD, Schwartz Z (2010) Direct and indirect effects of microstructured titanium substrates on the induction of mesenchymal stem cell differentiation towards the osteoblast lineage. Biomaterials 31(10):2728–2735

    Article  Google Scholar 

  38. Chakravorty N, Ivanovski S, Prasadam I, Crawford R, Oloyede A, **ao Y (2012) The microRNA expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation. Acta Biomater 8(9):3516–3523

    Article  Google Scholar 

  39. Gittens RA, McLachlan T, Olivares-Navarrete R, Cai Y, Berner S, Tannenbaum R, Schwartz Z, Sandhage KH, Boyan BD (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32(13):3395–3403

    Article  Google Scholar 

  40. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M (2004) Roughness response genes in osteoblasts. Bone 35(1):124–133

    Article  Google Scholar 

  41. Zinelis S, Silikas N, Thomas A, Syres K, Eliades G (2012) Surface characterization of SLActive dental implants. Eur J Esthet Dent 7(1):72–92

    Google Scholar 

  42. Kuzyk PR, Schemitsch EH (2011) The basic science of peri-implant bone healing. Indian J Orthop 45(2):108–115

    Article  Google Scholar 

  43. Spector M, Cease C, **a TL (1989) The local tissue-response to biomaterials. Crit Rev Biocompat 5(3):269–295

    Google Scholar 

  44. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS (2000) Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141(11):3956–3964

    Google Scholar 

  45. Dimitriou R, Babis GC (2007) Biomaterial osseointegration enhancement with biophysical stimulation. J Musculoskelet Neuronal Interact 7(3):253–265

    Google Scholar 

  46. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(7):1161–1166

    Google Scholar 

  47. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80(3):371–378

    Article  Google Scholar 

  48. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Prolif 3(4):393–403

    Article  Google Scholar 

  49. Friedenstein AJ (1976) Precursor cells of mechanocytes. In: G.H. Bourne JFD, Jeon KW (eds) Int Rev Cytol, vol. 47. Academic Press, pp 327–359

    Google Scholar 

  50. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272

    Google Scholar 

  51. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13(9):688–700

    Article  Google Scholar 

  52. Schenk RK, Buser D (1998) Osseointegration: a reality. Periodontol 2000 17:22–35

    Article  Google Scholar 

  53. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part II. Clin Orthop Relat Res 248:294–309

    Google Scholar 

  54. Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop Relat Res 248:283–293

    Google Scholar 

  55. Aubin JE, Liu F, Malaval L, Gupta AK (1995) Osteoblast and chondroblast differentiation. Bone 17(2 Suppl):77S–83S

    Article  Google Scholar 

  56. Malaval L, Liu F, Roche P, Aubin JE (1999) Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem 74(4):616–627

    Article  Google Scholar 

  57. Wall I, Donos N, Carlqvist K, Jones F, Brett P (2009) Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro. Bone 45(1):17–26

    Article  Google Scholar 

  58. Yamaguchi A, Komori T, Suda T (2000) Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr Rev 21(4):393–411

    Article  Google Scholar 

  59. von Bubnoff A, Cho KWY (2001) Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol 239(1):1–14

    Article  Google Scholar 

  60. Krishnan V, Bryant HU, MacDougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

    Article  Google Scholar 

  61. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GCM, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De Paepe A, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Jüppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van den Boogaard M-J, Van Hul W, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML (2001) LDL Receptor-Related Protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523

    Article  Google Scholar 

  62. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  Google Scholar 

  63. Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, Schwartz Z (2011) Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater 7(6):2740–2750

    Article  Google Scholar 

  64. Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, Boyan BD, Schwartz Z (2011) Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials 32(27):6399–6411

    Article  Google Scholar 

  65. Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C (1994) Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the develo** limb bud. Cell 79(6):993–1003

    Article  Google Scholar 

  66. **ao G, Jiang D, Gopalakrishnan R, Franceschi RT (2002) Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J Biol Chem 277(39):36181–36187

    Article  Google Scholar 

  67. Nobta M, Tsukazaki T, Shibata Y, **n C, Moriishi T, Sakano S, Shindo H, Yamaguchi A (2005) Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem 280(16):15842–15848

    Article  Google Scholar 

  68. Raz P, Lohmann CH, Turner J, Wang L, Poythress N, Blanchard C, Boyan BD, Schwartz Z (2004) 1 alpha,25(OH)(2)D-3 regulation of integrin expression is substrate dependent. J Biomed Mater Res A 71A(2):217–225

    Article  Google Scholar 

  69. Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, Chaudhri RA, Ornoy A, Boyan BD, Schwartz Z (2008) Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A 105(41):15767–15772

    Article  Google Scholar 

  70. Olivares-Navarrete R, Hyzy S, Wieland M, Boyan BD, Schwartz Z (2010) The roles of Wnt signaling modulators Dickkopf-1 (Dkk1) and Dickkopf-2 (Dkk2) and cell maturation state in osteogenesis on microstructured titanium surfaces. Biomaterials 31(8):2015–2024

    Article  Google Scholar 

  71. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, Boyan BD (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74A(1):49–58

    Article  Google Scholar 

  72. Klein MO, Bijelic A, Toyoshima T, Gotz H, von Koppenfels RL, Al-Nawas B, Duschner H (2010) Long-term response of osteogenic cells on micron and submicron-scale-structured hydrophilic titanium surfaces: sequence of cell proliferation and cell differentiation. Clin Oral Implants Res 21(6):642–649

    Article  Google Scholar 

  73. Klein MO, Bijelic A, Ziebart T, Koch F, Kammerer PW, Wieland M, Konerding MA, Al-Nawas B (2013) Submicron scale-structured hydrophilic titanium surfaces promote early osteogenic gene response for cell adhesion and cell differentiation. Clin Implant Dent Relat Res 15(2):166–175

    Article  Google Scholar 

Download references

Acknowledgements

The modSLA, SLA and SMO discs were supplied by Institut Straumann (Basel, Switzerland). We thank Dr. Sanjleena Singh and Dr. Mohammed Alfarsi for assisting us with the scanning electron microscope images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin **ao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Chakravorty, N., Jaiprakash, A., Ivanovski, S., **ao, Y. (2017). Implant Surface Modifications and Osseointegration. In: Li, Q., Mai, YW. (eds) Biomaterials for Implants and Scaffolds. Springer Series in Biomaterials Science and Engineering, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53574-5_4

Download citation

Publish with us

Policies and ethics

Navigation