A History of Immune and Neuroendocrine System Interactions

  • Chapter
  • First Online:
Neuroendocrine-Immune System Interactions

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 13))

  • 593 Accesses

Abstract

The purpose of this chapter is to provide a twentieth century history of neuroendocrine and immune systems and the interactions of their components. The ideas of immune and neuroendocrine structure–function relationships emerged in the life sciences once the cell had been recognized as the fundamental unit of life, in large part due to the use of improved microscopic and tissue-staining techniques. In addition, throughout the twentieth century, the study of immunity and neuroendocrinology has been guided by the idea of receptor molecules showing specificity for certain biological components. Interestingly, the very notions of neuroendocrine and immune systems, reminiscent of those still used today, were only explicitly formulated in the 1970s. While initial thinking about neuroendocrine–immune interactions in the 1970s–1980s was mostly framed in terms of systems, subsequent physiological and evolutionary research indicated that these interactions can also occur at the organ, tissue, cellular, and molecular levels and that the very labels “immune” and “neuroendocrine” need to be used with caution in present-day and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ader R, Cohen N (1975) Behaviorally conditioned immunosuppression. Psychosom Med 37:333–340

    Article  CAS  PubMed  Google Scholar 

  • Ader R, Cohen N (1982) Behaviorally conditioned immunosuppression and murine systemic lupus erythematosus. Science 215:1534–1536

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini YM, Shin W, Min S, Kim HJ (2020) Microphysiological engineering of immune responses in intestinal inflammation. Immune Network 20:e13

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson EM, Collip JB (1933) Thyreotropic hormone of anterior pituitary. Proc Soc Exp Biol Med 30:680–683

    Article  Google Scholar 

  • Anderson EM, Collip JB (1934) Studies on the physiology of the thyreotropic hormone of the anterior pituitary. J Physiol 82:11–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angeletti RH, Hickey WF (1985) A neuroendocrine marker in tissues of the immune system. Science 230:89–90

    Article  CAS  PubMed  Google Scholar 

  • Arguelles AE, Martinez MA, Hoffman C, Ortiz GA, Chekherdemian M (1972) Corticoadrenal and adrenergic overactivity and hyperlipidemia in prolonged emotional stress. Hormones 3:167–174

    CAS  PubMed  Google Scholar 

  • Augustin R, Schroder K, Murillo Rincon AP, Fraune S, Anton-Erxleben F, Herbst EM, Wittlieb J, Schwentner M, Grotzinger J, Wassenaar TM, Bosch TCG (2017) A secreted antibacterial neuropeptide shapes the microbiome of hydra. Nat Commun 8:698

    Article  PubMed  PubMed Central  Google Scholar 

  • Averill RL, Salaman DF, Worthington WC (1966) Thyrotrophin releasing factor in hypophyseal portal blood. Nature 211:144–145

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Bremer F (1921) Experimental diabetes insipidus. Arch Intern Med 28:773–803

    Article  CAS  Google Scholar 

  • Bargmann W, Scharrer E (1951) The site of origin of the hormones of the posterior pituitary. Am Sci 39:255–259

    CAS  PubMed  Google Scholar 

  • Barry J, Dubois MP, Poulain P (1973) LRF producing cells of the mammalian hypothalamus. A fluorescent antibody study. Z Zellforsch Mikrosk Anat 146:351–366

    Article  CAS  PubMed  Google Scholar 

  • Bassett JR, Cairncross KD, King MG (1973) Parameters of novelty, shock predictability and response contigency in corticosterone release in the rat. Physiol Behav 10:901–907

    Article  CAS  PubMed  Google Scholar 

  • Berkenbosch F, Van Oers J, Del Rey A, Tilders F, Besedovsky H (1987) Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 238:524–526

    Article  CAS  PubMed  Google Scholar 

  • Bernton EW, Beach JE, Holaday JW, Smallridge RC, Fein HG (1987) Release of multiple hormones by a direct action of interleukin-1 on pituitary cells. Science 238:519–521

    Article  CAS  PubMed  Google Scholar 

  • Besedovsky H, Sorkin E (1977) Network of immune-neuroendocrine interactions. Clin Exp Immunol 27:1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besedovsky H, Sorkin E, Felix D, Haas H (1977) Hypothalamic changes during the immune response. Eur J Immunol 7:323–325

    Article  CAS  PubMed  Google Scholar 

  • Besedovsky HO, Del Rey AE, Sorkin E (1985) Immune-neuroendocrine interactions. J Immunol 135:750s–754s

    Article  CAS  PubMed  Google Scholar 

  • Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606

    Article  CAS  PubMed  Google Scholar 

  • Blalock JE, Smith EM (1985) A complete regulatory loop between the immune and neuroendocrine systems. Fed Proc 44:108–111

    CAS  PubMed  Google Scholar 

  • Blalock JE, Harbour-Mcmenamin D, Smith EM (1985) Peptide hormones shared by the neuroendocrine and immunologic systems. J Immunol 135:858s–861s

    Article  CAS  PubMed  Google Scholar 

  • Bonner WA, Hulett HR, Sweet RG, Herzenberg LA (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43:404–409

    Article  CAS  PubMed  Google Scholar 

  • Bordet J (1895) Cintribution à l'étude du sérum chez les animaux vaccinés. Lamertin, H, Bruxelles

    Google Scholar 

  • Bordet J (1909) Studies in immunity. Wiley, New York

    Book  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  CAS  PubMed  Google Scholar 

  • Brittain RW, Wiener NI (1985) Neural and Pavlovian influences on immunity. Pavlov J Biol Sci 20:181–194

    Article  CAS  PubMed  Google Scholar 

  • Brown SL, Smith LR, Blalock JE (1987) Interleukin 1 and interleukin 2 enhance proopiomelanocortin gene expression in pituitary cells. J Immunol 139:3181–3183

    Article  CAS  PubMed  Google Scholar 

  • Brownstein MJ, Palkovits M, Saavedra JM, Bassiri RM, Utiger RD (1974) Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 185:267–269

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM (1940) Biological aspects of infectious disease. Macmillan, New York

    Google Scholar 

  • Burnet FM (1941) The production of antibodies. Macmillan, Melbourne

    Google Scholar 

  • Burnet FM (1952) Haemagglutination in relation to host cell-virus interaction. Annu Rev Microbiol 6:229–246

    Article  CAS  PubMed  Google Scholar 

  • Burnet FM (1957) A modification of Jerne's theory of antibody production using the concept of clonal selection. Aust J Sci 20:67–69

    Google Scholar 

  • Burnet FM, Fenner F (1949) The production of antibodies. Macmillan, Melbourne

    Google Scholar 

  • Burnet FM, Stone JD, Edney M (1950) The failure of antibody production in the chick embryo. Aust J Exp Biol Med Sci 28:291–297

    Article  CAS  PubMed  Google Scholar 

  • Camus J, Roussy G (1920) Experimental researches on the pituitary body: diabetes insipidus, glycosuria and those dystrophies considered as hypophyseal in origin. Endocrinology 4:507–522

    Article  CAS  Google Scholar 

  • Cannon WB (1914) The emergency function of the adrenal medulla in pain and the major emotions. Am J Phys 33:356–372

    Article  CAS  Google Scholar 

  • Cannon WB (1927) Bodily changes in pain, fear and rage. D. Appleton & Company, New York

    Google Scholar 

  • Chukwurah E, Osmundsen A, Davis SW, Lizarraga SB (2019) All together now: modeling the interaction of neural with non-neural systems using organoid models. Front Neurosci 13:582

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciaccio C (1906) Sur une nouvelle espéce cellulaire dans les glandes de Lieberkühn. C R Soc Biol 60:76–77

    Google Scholar 

  • Coceani F, Lees J, Dinarello CA (1988) Occurrence of interleukin-1 in cerebrospinal fluid of the conscious cat. Brain Res 446:245–250

    Article  CAS  PubMed  Google Scholar 

  • Cohn EJ, Oncley JL, Strong LE, Hughes WL, Armstrong SH (1944) Chemical, clinical, and immunological studies on the products of human plasma fractionation. I. the characterization of the protein fractions of human plasma. J Clin Invest 23:417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collip JB (1933) The anterior pituitary lobe: fractionation of active principles. Lancet 224:1208–1209

    Article  CAS  Google Scholar 

  • Collip JB, Anderson EM, Thomson DL (1933a) The adrenotropic hormone of the anterior pituitary lobe. Lancet 222:347

    Article  Google Scholar 

  • Collip JB, Selye H, Thomson DL (1933b) Gonad-stimulating hormones in hypophysectomised animals. Nature 131:56

    Article  Google Scholar 

  • Commitee NP (1978) The Nobel Prize in Physiology or Medicine 1977 [Online]. https://www.nobelprize.org/prizes/medicine/1977/summary/. Accessed 1 Nov 2021

  • Committee NP (1960) The Nobel Prize in Physiology or Medicine 1960 [Online]. https://www.nobelprize.org/prizes/medicine/1960/summary/. Accessed 1 Nov 2021

  • Committee NP (1984) The Nobel Prize in Physiology or Medicine 1984 [Online]. https://www.nobelprize.org/prizes/medicine/1984/jerne/facts/. Accessed 1 Nov 2021

  • Coons AH (1961) The beginnings of immunofluorescence. J Immunol 87:499–503

    Article  CAS  PubMed  Google Scholar 

  • Coons AH, Kaplan MH (1950) Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J Exp Med 91:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coons AH, Snyder JC, Sheever FS, Murray E (1950) Localization of antigen in tissue cells; antigens of Rickettsiae and mumps virus. J Exp Med 91:31–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coons AH, Leduc EH, Kaplan MH (1951) Localization of antigen in tissue cells. VI. The fate of injected foreign proteins in the mouse. J Exp Med 93:173–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coons AH, Leduc EH, Connolly JM (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cross RJ, Markesbery WR, Brooks WH, Roszman TL (1980) Hypothalamic-immune interactions. I. The acute effect of anterior hypothalamic lesions on the immune response. Brain Res 196:79–87

    Article  CAS  PubMed  Google Scholar 

  • Cross RJ, Brooks WH, Roszman TL, Markesbery WR (1982) Hypothalamic-immune interactions. Effect of hypophysectomy on neuroimmunomodulation. J Neurol Sci 53:557–566

    Article  CAS  PubMed  Google Scholar 

  • Crowe SJ, Cushing H, Homans J (1909) Effects of hypophyseal transplantation following total hypophysectomy in the canine. Q J Exp Physiol 2:389–400

    Article  Google Scholar 

  • Cushing H (1909) III. Partial hypophysectomy for acromegaly: with remarks on the function of the hypophysis. Ann Surg 50:1002–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushing H (1933) Posterior pituitary activity from an anatomical standpoint. Am J Pathol 9(539–548):19

    Google Scholar 

  • Dale HH (1906) On some physiological actions of ergot. J Physiol 34:163–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Dale HH (1909) The action of extracts of the pituitary body. Biochem J 4:427–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day R, Salzet M (2002) The neuroendocrine phenotype, cellular plasticity, and the search for genetic switches: redefining the diffuse neuroendocrine system. Neuro Endocrinol Lett 23:447–451

    PubMed  Google Scholar 

  • Du Vigneaud V, Ressler C, Swan JC, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc. 76:12

    Article  Google Scholar 

  • Duff GW, Durum SK (1983) The pyrogenic and mitogenic actions of interleukin-1 are related. Nature 304:449–451

    Article  CAS  PubMed  Google Scholar 

  • Edelman GM, Benacerraf B (1962) On structural and functional relations between antibodies and proteins of the gamma-system. Proc Natl Acad Sci U S A 48:1035–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman GM, Gally JA (1967) Somatic recombination of duplicated genes: an hypothesis on the origin of antibody diversity. Proc Natl Acad Sci U S A 57:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman GM, Poulik MD (1961) Studies on structural units of the gamma-globulins. J Exp Med 113:861–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman GM, Benacerraf B, Ovary Z, Poulik MD (1961) Structural differences among antibodies of different specificities. Proc Natl Acad Sci U S A 47:1751–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich P (1880) Methodologische Beiträge zur Physiologie und Pathologie der verschiedenen Formen der Leukocyten. Z Klin Med 1:553–560

    Google Scholar 

  • Engstrom L, Rosen K, Angel A, Fyrberg A, Mackerlova L, Konsman JP, Engblom D, Blomqvist A (2008) Systemic immune challenge activates an intrinsically regulated local inflammatory circuit in the adrenal gland. Endocrinology 149:1436–1450

    Article  PubMed  Google Scholar 

  • Felber JP (1963) ACTH antibodies and their use for a radio-immunoassay for ACTH. Experientia 19:227–229

    Article  CAS  PubMed  Google Scholar 

  • Feyrter F (1939) Uëber diffuse endokrine epitheliale Organe. J. A. Barth, Leipzig

    Google Scholar 

  • Fontana A, Kristensen F, Dubs R, Gemsa D, Weber E (1982) Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol 129:2413–2419

    Article  CAS  PubMed  Google Scholar 

  • Fontana A, Weber E, Dayer JM (1984) Synthesis of interleukin 1/endogenous pyrogen in the brain of endotoxin-treated mice: a step in fever induction? J Immunol 133:1696–1698

    Article  CAS  PubMed  Google Scholar 

  • Fuxe K, Hokfelt T, Said SI, Mutt V (1977) Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci Lett 5:241–246

    Article  CAS  PubMed  Google Scholar 

  • Gibson T, Medawar PB (1943) The fate of skin homografts in man. J Anat 77:299–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsburg S, Jablonka E (2021) Evolutionary transitions in learning and cognition. Philos Trans R Soc Lond Biol Sci 376:20190766

    Article  Google Scholar 

  • Gisler RH, Schenkel-Hulliger L (1971) Hormonal regulation of the immune response. II. Influence of pituitary and adrenal activity on immune responsiveness in vitro. Cell Immunol 2:646–657

    Article  CAS  PubMed  Google Scholar 

  • Glyn J (1998) The discovery and early use of cortisone. J R Soc Med 91:513–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon AS, Katsh GF (1949) The relation of the adrenal cortex to the structure and phagocytic activity of the macrophagic system. Ann N Y Acad Sci 52:1–30

    Article  CAS  PubMed  Google Scholar 

  • Green JD, Harris GW (1949) Observation of the hypophysio-portal vessels of the living rat. J Physiol 108:359–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross DS (1976) Distribution of gonadotropin-releasing hormone in the mouse brain as revealed by immunohistochemistry. Endocrinology 98:1408–1417

    Article  CAS  PubMed  Google Scholar 

  • Gross DS, Baker BL (1977) Immunohistochemical localization of gonadotropin-releasing hormone (GnRH) in the fetal and early postnatal mouse brain. Am J Anat 148:195–215

    Article  CAS  PubMed  Google Scholar 

  • Guillemin R (1978) Peptides in the brain: the new endocrinology of the neuron. Science 202:390–402

    Article  CAS  PubMed  Google Scholar 

  • Guillemin R, Rosenberg B (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57:599–607

    Article  CAS  PubMed  Google Scholar 

  • Guillemin R, Sakiz E, Ward DN (1965) Further purification of Tsh-releasing factor (Trf) from sheep hypothalamic tissues, with observations on the amino acid composition. Proc Soc Exp Biol Med 118:1132–1137

    Article  CAS  PubMed  Google Scholar 

  • Hale HB, Sayers G, Sydnor KL, Sweat ML, Van Fossan DD (1957) Blood adrenocorticotrophic hormone and plasma corticosteroids in men exposed to adverse environmental conditions. J Clin Investig 36:1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen J, Meretzky D, Woldesenbet S, Stolovitzky G, Iyengar R (2017) A flexible ontology for inference of emergent whole cell function from relationships between subcellular processes. Sci Rep 7:17689

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris GW (1937) The induction of ovulation in the rabbit, by electrical stimulation of the hypothalamo-hypophysial mechanism. Proc R Soc Lond B 122:374–394

    Article  Google Scholar 

  • Harris GW (1948) Neural control of the pituitary gland. Physiol Rev 28:139–179

    Article  CAS  PubMed  Google Scholar 

  • Harris GW (1951a) Neural control of the pituitary gland. I. The neurohypophysis. Br Med J 2:559–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris GW (1951b) Neural control of the pituitary gland. II. The adenohypophysis, with special reference to the secretion of A.C.T.H. Br Med J 2:627–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris GW (1955) Neural control of the pituitary gland. Edward Arnold, London

    Google Scholar 

  • Hench PS, Kendall EC, Slocumb CH, Polley HF (1949) The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone: compound E) and of pituitary adrenocortical hormone in arthritis: preliminary report. Ann Rheum Dis 8:97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hetier E, Ayala J, Denefle P, Bousseau A, Rouget P, Mallat M, Prochiantz A (1988) Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J Neurosci Res 21:391–397

    Article  CAS  PubMed  Google Scholar 

  • Hild W (1951) Experimental studies on the morphology of the neurosecretory pathway following severance of the pituitary stalk, super- and dehydration of the tissues, and overload of osmoregulation. Virchows Archiv fuer pathologisch Anatomie und Physiologie und fuer klinische Medizin 319:526–546

    CAS  Google Scholar 

  • Hilton JG, Scian LF, Westermann CD, Nakano J, Kruesi OR (1960) Vasopressin stimulation of the isolated adrenal glands: nature and mechanism of hydrocortisone secretion. Endocrinology 67:298–310

    Article  CAS  PubMed  Google Scholar 

  • Hooghe-Peters E, Velkeniers B, Vanhaelst L, Hooghe R (1991) Interleukin-1, interleukin-6: messengers in the neuroendocrine immune system? Pathol Res Pract 187:622–625

    Article  CAS  PubMed  Google Scholar 

  • Imeri L, Opp MR, Krueger JM (1993) An IL-1 receptor and an IL-1 receptor antagonist attenuate muramyl dipeptide- and IL-1-induced sleep and fever. Am J Physiol 265:R907–R913

    CAS  PubMed  Google Scholar 

  • Ishikawa H (1973) Study on the existence of TRH in the cerebrospinal fluid in humans. Biochem Biophys Res Commun 54:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Jerne NK (1955) The natural-selection theory of antibody formation. Proc Natl Acad Sci USA 41:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerne NK (1971) The somatic generation of immune recognition. Eur J Immunol 1:1–9

    Article  CAS  PubMed  Google Scholar 

  • Jerne NK (1973) The immune system. Sci Am 229:52–60

    Article  CAS  PubMed  Google Scholar 

  • Jerne NK (1974) Towards a network theory of the immune system. Ann Immunol (Paris) 125C:373–389

    CAS  PubMed  Google Scholar 

  • Jerne NK (1985) The generative grammar of the immune system. EMBO J 4:847–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Oron TR, Clark WT, Bankapur AR, D'andrea D, Lepore R, Funk CS, Kahanda I, Verspoor KM, Ben-Hur A, Koo Da CE, Penfold-Brown D, Shasha D, Youngs N, Bonneau R, Lin A, Sahraeian SM, Martelli PL, Profiti G, Casadio R, Cao R, Zhong Z, Cheng J, Altenhoff A, Skunca N, Dessimoz C, Dogan T, Hakala K, Kaewphan S, Mehryary F, Salakoski T, Ginter F, Fang H, Smithers B, Oates M, Gough J, Toronen P, Koskinen P, Holm L, Chen CT, Hsu WL, Bryson K, Cozzetto D, Minneci F, Jones DT, Chapman S, Bkc D, Khan IK, Kihara D, Ofer D, Rappoport N, Stern A, Cibrian-Uhalte E, Denny P, Foulger RE, Hieta R, Legge D, Lovering RC, Magrane M, Melidoni AN, Mutowo-Meullenet P, Pichler K, Shypitsyna A, Li B, Zakeri P, Elshal S, Tranchevent LC, Das S, Dawson NL, Lee D, Lees JG, Sillitoe I, Bhat P, Nepusz T, Romero AE, Sasidharan R, Yang H, Paccanaro A, Gillis J, Sedeno-Cortes AE, Pavlidis P, Feng S, Cejuela JM, Goldberg T, Hamp T, Richter L, Salamov A, Gabaldon T, Marcet-Houben M, Supek F, Gong Q, Ning W, Zhou Y, Tian W, Falda M, Fontana P, Lavezzo E, Toppo S, Ferrari C, Giollo M et al (2016) An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biol 17:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson HM, Smith EM, Torres BA, Blalock JE (1982) Regulation of the in vitro antibody response by neuroendocrine hormones. Proc Natl Acad Sci U S A 79:4171–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson HM, Torres BA, Smith EM, Dion LD, Blalock JE (1984) Regulation of lymphokine (gamma-interferon) production by corticotropin. J Immunol 132:246–250

    Article  CAS  PubMed  Google Scholar 

  • Julius MH, Masuda T, Herzenberg LA (1972) Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc Natl Acad Sci U S A 69:1934–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalden JR, Evans MM, Irvine WJ (1970) The effect of hypophysectomy on the immune response. Immunology 18:671–679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katsoyannis PG, Du Vigneaud V (1958) The synthesis of the histidine analog of the Vasopressins. Arch Biochem Biophys 78:555–562

    Article  CAS  PubMed  Google Scholar 

  • Koehler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  Google Scholar 

  • Krueger JM (1990) Somnogenic activity of immune response modifiers. Trends Pharmacol Sci 11:122–126

    Article  CAS  PubMed  Google Scholar 

  • Krueger JM, Walter J, Dinarello CA, Wolff SM, Chedid L (1984) Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am J Physiol 246:R994–R999

    CAS  PubMed  Google Scholar 

  • Krueger JM, Obál F (1993) Growth hormone-releasing hormone and interleukin-1 in sleep regulation. FASEB J 7:645–652

    Article  CAS  PubMed  Google Scholar 

  • Labella FS, Sanwal M (1965) Isolation of nerve endings from the posterior pituitary gland. Electron microscopy of fractions obtained by centrifugation. J Cell Biol 25(Suppl):179–193

    Article  PubMed Central  Google Scholar 

  • Landsteiner K (1901) Ueber Agglutinationserscheinungen normalen menschlichen Blute. Wien Klin Wochenschr 14:1132–1134

    Google Scholar 

  • Landsteiner K (1930) On individual differences in human blood [Online]. NobelPrize.org. https://www.nobelprize.org/uploads/2018/06/landsteiner-lecture.pdf. Accessed 1 Nov 2021

  • Landsteiner K (1961) On agglutination of normal human blood. Transfusion 1:5–8

    Article  CAS  PubMed  Google Scholar 

  • Landsteiner K, Van Der Scheer J (1928) Serological differentiation of steric isomers. J Exp Med 48:315–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley JN (1901) Observations on the physiological action of extracts of the supra-renal bodies. J Physiol 27:237–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Roith D, Shiloach J, Roth J (1982) Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides 3:211–215

    Article  PubMed  Google Scholar 

  • Lederberg J (1959) Genes and antibodies. Science 129:1649–1653

    Article  CAS  PubMed  Google Scholar 

  • Leonardelli J, Barry J, Dubois MP (1973) Demonstration by fluorescent antibody technic of a substance immunologically related to LH-RF in hypothalamus and median eminence in mammals. C R Hebd Séances Acad Sci 276:2043–2046

    CAS  Google Scholar 

  • Li XG, Chen MX, Zhao SQ, Wang XQ (2021) Intestinal models for personalized medicine: from conventional models to microfluidic primary intestine-on-a-chip. Stem Cell Rev Rep. 18(6):2137–2151

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister J (1880) Remarks on micro-organisms: their relation to disease. Br Med J 2:363–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister J (1896) Address by the president. Science 4:409–429

    Article  CAS  PubMed  Google Scholar 

  • Lue FA, Bail M, Jephthah-Ochola J, Carayanniotis K, Gorczynski R, Moldofsky H (1988) Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. Int J Neurosci 42:179–183

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf GM (1974) The neuroendocrine design of the gut. The play of chemicals in a chemical playground. Gastroenterology 67:159–184

    Article  CAS  PubMed  Google Scholar 

  • Makrygianni EA, Chrousos GP (2021) From brain organoids to networking assembloids: implications for neuroendocrinology and stress medicine. Front Physiol 12:621970

    Article  PubMed  PubMed Central  Google Scholar 

  • Marrack J (1955) The structure of antigen-antibody aggregates and complement fixation. Annu Rev Microbiol 9:369–386

    Article  CAS  PubMed  Google Scholar 

  • Marrack JR, Hoch H, Johns RG (1951) The valency of antibodies. Br J Exp Pathol 32:212–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason JW, Brady JV, Polish E, Bauer JA, Robinson JA, Rose RM, Taylor ED (1961) Patterns of corticosteroid and pepsinogen change related to emotional stress in the monkey. Science 133:1596–1598

    Article  CAS  PubMed  Google Scholar 

  • Masson P (1914) La glande endocrine de l'intestin chez l'homme. Comp Rend Acad Sci 158:59–61

    Google Scholar 

  • Masson P (1928) Carcinoids (Argentaffin-cell tumors) and nerve hyperplasia of the appendicular mucosa. Am J Pathol 4(181–212):19

    Google Scholar 

  • Mayer MM (1951) Immunochemistry. Annu Rev Biochem 20:415–440

    Article  CAS  PubMed  Google Scholar 

  • Mazzuca M (1964) Fine structure of the pericapillary nerve endings of the hypothalamo-hypophysial tract at the level of the infundibulum in the Guinea pig. C R Seances Soc Biol Fil 158:2090–2092

    CAS  PubMed  Google Scholar 

  • Medawar PB (1948) Tests by tissue culture methods on the nature of immunity to transplanted skin. Q J Microsc Sci 89:239–252

    CAS  PubMed  Google Scholar 

  • Metalnikov S, Chrorine V (1926) Rôle des reflexes conditionnels dans l’immunité. Ann Inst Pasteur 40:893–900

    Google Scholar 

  • Metalnikov S, Chrorine V (1928) Rôle des reflexes conditionnels dans la formation des anticorps. C R Soc Biol 99

    Google Scholar 

  • Metcalf D, Brumby M (1966) The role of the thymus in the ontogeny of the immune system. J Cell Physiol 67(1):149–168

    Article  Google Scholar 

  • Metchnikoff E (1893) Lectures on the comparative pathology of inflammation. Kegan Paul, Trench, Trübner & Co., London

    Google Scholar 

  • Miller TR (1977) Psychophysiologic aspects of cancer: the James Ewing lecture. Cancer 39:413–418

    Article  CAS  PubMed  Google Scholar 

  • Miller JF, Mitchell GF (1968) Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J Exp Med 128:801–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishell RI, Dutton RW (1967) Immunization of dissociated spleen cell cultures from normal mice. J Exp Med 126:423–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell GF, Miller JF (1968a) Cell to cell interaction in the immune response. II. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med 128:821–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell GF, Miller JF (1968b) Immunological activity of thymus and thoracic-duct lymphocytes. Proc Natl Acad Sci U S A 59:296–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris CJ (1951) The adrenocorticotropic hormone (A.C.T.H.) of the pituitary gland. Lancet 1:161–164

    Article  CAS  PubMed  Google Scholar 

  • Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR (2020) Immune organs and immune cells on a Chip: an overview of biomedical applications. Micromachines (Basel) 11

    Google Scholar 

  • Murphy JB (1913) Transplantability of tissues to the embryo of foreign species : its bearing on questions of tissue specificity and tumor immunity. J Exp Med 17:482–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane PK, Pierce GB Jr (1967) Enzyme-labeled antibodies for the light and electron microscopic localization of tissue antigens. J Cell Biol 33:307–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuttall GHF (1888) Experimente ueber die bacterienfeindlichen Einfluesse des thierischen Korpers. Z Hyg Infektionskr 4:353–394

    Google Scholar 

  • Oliver G, Schafer EA (1895) The physiological effects of extracts of the suprarenal capsules. J Physiol 18:230–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opp MR, Krueger JM (1994) Anti-interleukin-1 beta reduces sleep and sleep rebound after sleep deprivation in rats. Am J Physiol 266:R688–R695

    CAS  PubMed  Google Scholar 

  • Ottaviani E, Cossarizza A, Ortolani C, Monti D, Franceschi C (1991) ACTH-like molecules in gastropod molluscs: a possible role in ancestral immune response and stress. Proc Biol Sci 245:215–218

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani E, Trevisan P, Pederzoli A (1992) Immunocytochemical evidence for ACTH- and beta-endorphin-like molecules in phagocytic blood cells of urodelan amphibians. Peptides 13:227–231

    Article  CAS  PubMed  Google Scholar 

  • Pacheco-López G, Niemi MB, Engler H, Schedlowski M (2007) Neuro-immune associative learning. In: Bermúdez-Rattoni F (ed) Neural plasticity and memory: from genes to brain imaging. CRC Press, Boca Raton

    Google Scholar 

  • Palkovits M, Arimura A, Brownstein M, Schally AV, Saavedra JM (1974) Luteinizing hormone-releasing hormone (LH-RH) content of the hypothalamic nuclei in rat. Endocrinology 95:554–558

    Article  CAS  PubMed  Google Scholar 

  • Paulescu CN (1907) Recherches sur la physiologie de l’hypophyse du cerveau: L’hypophysectomie et ses effets. J Physiol Pathol Gen 9:441–456

    Google Scholar 

  • Pearse AG (1968) Common cytochemical and ultrastructural characteristics of cells producing polypeptide hormones (the APUD series) and their relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R Soc Lond Biol Sci 170:71–80

    Article  CAS  Google Scholar 

  • Pearse AG (1969) The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 17:303–313

    Article  CAS  PubMed  Google Scholar 

  • Pearse AG (1976) Peptides in brain and intestine. Nature 262:92–94

    Article  Google Scholar 

  • Pearse AG (1978) Diffuse neuroendocrine system: peptides common to brain and intestine and their relationship to the APUD concept. In: Hughes, J. (ed) Centrally acting peptides. Palgrave Macmillan, London

    Google Scholar 

  • Pearse AG, Polak JM (1971) Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12:783–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer R (1894) Weitere Untersuchungen uber das Wesen der Choleraimmunitat und uber specifischbaktericide Process. Z Hyg Infektionskr 18:1–16

    Article  Google Scholar 

  • Pierpaoli W, Besedovsky HO (1975) Role of the thymus in programming of neuroendocrine functions. Clin Exp Immunol 20:323–338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polak JM, Bloom SR (1979a) The diffuse neuroendocrine system. Studies of this newly discovered controlling system in health and disease. J Histochem Cytochem 27:1398–1400

    Article  CAS  PubMed  Google Scholar 

  • Polak JM, Bloom SR (1979b) The neuroendocrine design of the gut. Clin Endocrinol Metab 8:313–330

    Article  CAS  PubMed  Google Scholar 

  • Polak JM, Pearse AG, Adams C, Garaud JC (1974a) Immunohistochemical and ultrastructural studies on the endocrine polypeptide (APUD) cells of the avian gastrointestinal tract. Experientia 30:564–567

    Article  CAS  PubMed  Google Scholar 

  • Polak JM, Pearse AG, Garaud JC, Bloom SR (1974b) Cellular localization of a vasoactive intestinal peptide in the mammalian and avian gastrointestinal tract. Gut 15:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter JC (1973) Neuroendocrine systems: the need for precise identification and rigorous description of their operations. Prog Brain Res 39:1–6

    Article  Google Scholar 

  • Porter JC, Rumsfeld HW Jr (1959) Further study of an ACTH-releasing protein from hypophyseal portal vessel plasma. Endocrinology 64:948–954

    Article  CAS  PubMed  Google Scholar 

  • Ramon Y, Cajal S (1893) Sur les ganglions et les plexus nerveux de l'intestin. C R Soc Biol 39:217–223

    Google Scholar 

  • Ramon Y, Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés. Maloine, Paris

    Google Scholar 

  • Reichlin S (1963a) Neuroendocrinology. N Engl J Med 269:1182–1191

    Article  CAS  PubMed  Google Scholar 

  • Reichlin S (1963b) Neuroendocrinology. N Engl J Med 269:1296–1303

    Article  CAS  PubMed  Google Scholar 

  • Reichlin S (1963c) Neuroendocrinology. N Engl J Med 269:1246–1250

    Article  CAS  PubMed  Google Scholar 

  • Rinne UK (1960) Neurosecretory material around the hypophysial portal vessels in the median eminence of the rat. Studies on its histological and histochemical properties and functional significance. Acta Endocrinol 35:1–108

    CAS  Google Scholar 

  • Rivier C, Vale W, Guillemin R (1973) An in vivo corticotropin-releasing factor (CRF) assay based on plasma levels of radioimmunoassayable ACTH. Proc Soc Exp Biol Med 142:842–845

    Article  CAS  PubMed  Google Scholar 

  • Rodger NW, Beck JC, Burgus R, Guillemin R (1969) Variability of response in the bioassay for a hypothalamic somatotrophin releasing factor based on rat pituitary growth hormone content. Endocrinology 84:1373–1383

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez EM, Dellmann HD (1970) Ultrastructure and hormonal content of the proximal stump of the transected hypothalamo-hypophysial tract of the frog (Rana pipiens). Z Zellforsch Mikrosk Anat 104:449–470

    Article  CAS  PubMed  Google Scholar 

  • Rogers MP, Dubey D, Reich P (1979) The influence of the psyche and the brain on immunity and disease susceptibility: a critical review. Psychosom Med 41:147–164

    Article  CAS  PubMed  Google Scholar 

  • Saffran M, Schally AV (1955a) In vitro bioassay of corticotropin: modification and statistical treatment. Endocrinology 56:523–532

    Article  CAS  PubMed  Google Scholar 

  • Saffran M, Schally AV (1955b) The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol 33:408–415

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky R, Rivier C, Yamamoto G, Plotsky P, Vale W (1987) Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science 238:522–524

    Article  CAS  PubMed  Google Scholar 

  • Schally AV, Saffran M, Zimmermann B (1958) A corticotrophin-releasing factor: partial purification and amino acid composition. Biochem J 70:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schally AV, Bowers CY, Redding TW, Barrett JF (1966) Isolation of thyrotropin releasing factor (TRF) from porcine hypothalamus. Biochem Biophys Res Commun 25:165–169

    Article  CAS  PubMed  Google Scholar 

  • Scharrer E (1928) Die Lichtempflindlickeit Blinder Elritzen. Z Vgl Physiol 7:1–38

    Article  Google Scholar 

  • Scharrer E (1965) Editorial. Neuroendocrinology 1:1–3

    Article  Google Scholar 

  • Scharrer E, Scharrer B (1937) Ueber Druesen-Nervenzellen und neurosekretorische Organe bei Wirbellosen und Wirbeltieren. Biol Rev 12:185–216

    Article  Google Scholar 

  • Scharrer E, Scharrer B (1963) Neuroendocrinology. Columbia University Press, New York

    Google Scholar 

  • Selye H (1950) Stress and the general adaptation syndrome. Br Med J 1:1383–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selye H (1976) Forty years of stress research: principal remaining problems and misconceptions. Can Med Assoc J 115:53–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoham S, Davenne D, Cady AB, Dinarello CA, Krueger JM (1987) Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am J Physiol 253:R142–R149

    CAS  PubMed  Google Scholar 

  • Smith PE (1926) Ablation and transplantation of the hypophysis of the rat. Anat Rec 32:221

    Google Scholar 

  • Smith PE (1930) Hyposphysectomy and a replacement therapy in the rat. Am J Anat 45:205–273

    Article  Google Scholar 

  • Smithies O (1967) Antibody variability. Somatic recombination between the elements of “antibody gene pairs” may explain antibody variability. Science 157:267–273

    Article  CAS  PubMed  Google Scholar 

  • Soldatos TG, Perdigao N, Brown NP, Sabir KS, O’donoghue SI (2015) How to learn about gene function: text-mining or ontologies? Methods 74:3–15

    Article  CAS  PubMed  Google Scholar 

  • Spitzer R (1968) The clinical importance of polypeptide hormone assays. Clin Biochem 1:216–223

    Article  CAS  Google Scholar 

  • Stallybrass CO (1950) The mechanism of antibody production. Proc R Soc Med 43:137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starling EH (1905) On the chemical correlations of the functions of the body. Lancet 166:339–341

    Article  Google Scholar 

  • Starling EH (1923) The wisdom of the body: the Harveian oration, delivered before the Royal College of Physicians of London on St. Luke’s Day, 1923. Br Med J 2:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein M, Schiavi RC, Camerino M (1976) Influence of brain and behavior on the immune system. Science 191:435–440

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Keller SE, Schleifer SJ (1985) Stress and immunomodulation: the role of depression and neuroendocrine function. J Immunol 135:827s–833s

    Article  CAS  PubMed  Google Scholar 

  • Tache Y, Du Ruisseau P, Tache J, Selye H, Collu R (1976) Shift in adenohypophyseal activity during chronic intermittent immobilization of rats. Neuroendocrinology 22:325–336

    Article  CAS  PubMed  Google Scholar 

  • Taishi P, Chen Z, Obál FJR, Hansen MK, Zhang J, Fang J, Krueger JM (1998) Sleep-associated changes in interleukin-1beta mRNA in the brain. J Interferon Cytokine Res 18:793–798

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Kapás L, Fang J, Seyer JM, Wang Y, Krueger JM (1996) An interleukin-1 receptor fragment inhibits spontaneous sleep and muramyl dipeptide-induced sleep in rabbits. Am J Physiol 271:R101–R108

    CAS  PubMed  Google Scholar 

  • Takahashi S, Fang J, Kapás L, Wang Y, Krueger JM (1997) Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits. Am J Physiol 273:R677–R682

    CAS  PubMed  Google Scholar 

  • Tambalo M, Lodato S (2020) Brain organoids: human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Res 1746:147028

    Article  CAS  PubMed  Google Scholar 

  • Tecoma ES, Huey LY (1985) Psychic distress and the immune response. Life Sci 36:1799–1812

    Article  CAS  PubMed  Google Scholar 

  • Terao A, Matsumura H, Saito M (1998) Interleukin-1 induces slow-wave sleep at the prostaglandin D2-sensitive sleep-promoting zone in the rat brain. J Neurosci 18:6599–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treiman DM, Fulker DW, Levine S (1970) Interaction of genotype and environment as determinants of corticosteroid response to stress. Dev Psychobiol 3:131–140

    Article  CAS  PubMed  Google Scholar 

  • Tyan ML (1968) Studies on the ontogeny of the mouse immune system. I. Cell-bond immunity. J Immunol 100:535–542

    Article  CAS  PubMed  Google Scholar 

  • Tyan ML, Herzenberg LA (1968) Studies on the ontogeny of the mouse immune system. II. Immunoglobulin-producing cells. J Immunol 101:446–450

    Article  CAS  PubMed  Google Scholar 

  • Utiger RD, Parker ML, Daughaday WH (1962) Studies on human growth hormone. I. A radio-immunoassay for human growth hormone. J Clin Invest 41:254–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verney EB (1947) The antidiuretic hormone and the factors which determine its release. Proc R Soc Lond Biol Sci 135:25–106

    Article  CAS  Google Scholar 

  • Von Behring E, Kitasako S (1890) Ueber das Zustandekommen der Diphtherie-Immunitat and der Tetanus-Immunitat bei Thieren. Dtsch Med Wochenschr 16:1113–1114

    Article  Google Scholar 

  • Von Euler US, Gaddum JH (1931) An unidentified depressor substance in certain tissue extracts. J Physiol 72:74–87

    Article  Google Scholar 

  • Weiss JM (1970) Somatic effects of predictable and unpredictable shock. Psychosom Med 32:397–408

    Article  CAS  PubMed  Google Scholar 

  • Wittkowski W (1967) Synaptic structures and elementary granules in the neurohypophysis of the Guinea pig. Z Zellforsch Mikrosk Anat 82:434–458

    Article  CAS  PubMed  Google Scholar 

  • Wormall A (1948) Contributions of chemistry to the problems of immunology. Br Med Bull 5:333–338

    Article  CAS  PubMed  Google Scholar 

  • Yalow RS, Berson SA (1960) Immunoassay of endogenous plasma insulin in man. J Clin Invest 39:1157–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pieter Konsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Konsman, J.P. (2023). A History of Immune and Neuroendocrine System Interactions. In: Konsman, J.P., Reyes, T.M. (eds) Neuroendocrine-Immune System Interactions. Masterclass in Neuroendocrinology, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-031-21358-8_1

Download citation

Publish with us

Policies and ethics

Navigation