The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders

  • Chapter
  • First Online:
Drug Development in Psychiatry

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 30))

  • 707 Accesses

Abstract

CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for develo** new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Conn PJ, Roth BL. Opportunities and challenges of psychiatric drug discovery: roles for scientists in academic, industry, and government settings. Neuropsychopharmacology. 2008;33(9):2048–60.

    Article  CAS  PubMed  Google Scholar 

  2. Kesby JP, Eyles DW, McGrath JJ, Scott JG. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry. 2018;8(1):30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: challenges, opportunities and strategies. Prog Neurobiol. 2017;152:3–20.

    Article  CAS  PubMed  Google Scholar 

  4. Owens DC, Johnstone EC. The development of antipsychotic drugs. Brain Neurosci Adv. 2018;2:1–6.

    Google Scholar 

  5. van der Doef TF, Zaragoza Domingo S, Jacobs GE, Drevets WC, Marston HM, Nathan PJ, et al. New approaches in psychiatric drug development. Eur Neuropsychopharmacol. 2018;28(9):983–93.

    Article  PubMed  Google Scholar 

  6. Yang AC, Tsai S-J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci. 2017;18(8):1689.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ban TA. The role of serendipity in drug discovery. Dialogues Clin Neurosci. 2006;8(3):335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baumeister AA, Hawkins MF, López-Muñoz F. Toward standardized usage of the word serendipity in the historiography of psychopharmacology. J Hist Neurosci. 2010;19(3):253–70.

    Article  PubMed  Google Scholar 

  9. Carpenter WT Jr, Davis JM. Another view of the history of antipsychotic drug discovery and development. Mol Psychiatry. 2012;17:1168–73.

    Article  CAS  PubMed  Google Scholar 

  10. Sayed Y, Garrison JM. The dopamine hypothesis of schizophrenia and the antagonistic action of neuroleptic drugs--a review. Psychopharmacol Bull. 1983;19(2):283–8.

    CAS  PubMed  Google Scholar 

  11. Seeman P. Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse (New York, NY). 1987;1(2):133–52.

    Article  CAS  Google Scholar 

  12. Potter WZ. Psychotherapeutic drugs and biogenic amines. Current concepts and therapeutic implications. Drugs. 1984;28(2):127–43.

    Article  CAS  PubMed  Google Scholar 

  13. Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology. 2017;120:11–9.

    Article  CAS  PubMed  Google Scholar 

  14. Fallon JH, Opole IO, Potkin SG. The neuroanatomy of schizophrenia: circuitry and neurotransmitter systems. Clin Neurosci Res. 2003;3(1):77–107.

    Article  CAS  Google Scholar 

  15. Kahn RS, Sommer IE. The neurobiology and treatment of first-episode schizophrenia. Mol Psychiatry. 2015;20(1):84–97.

    Article  CAS  PubMed  Google Scholar 

  16. Khavari B, Cairns MJ. Epigenomic dysregulation in schizophrenia: in search of disease etiology and biomarkers. Cells. 2020;9(8):1837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15–33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nucifora FC Jr, Woznica E, Lee BJ, Cascella N, Sawa A. Treatment resistant schizophrenia: clinical, biological, and therapeutic perspectives. Neurobiol Dis. 2019;131:104257.

    Article  PubMed  Google Scholar 

  19. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  CAS  PubMed Central  Google Scholar 

  20. van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol Psychiatry. 2018;84(9):644–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wojtalik JA, Smith MJ, Keshavan MS, Eack SM. A systematic and meta-analytic review of neural correlates of functional outcome in schizophrenia. Schizophr Bull. 2017;43(6):1329–47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Frood A. High-dose opiates could crack chronic pain. Nature. 2012. https://doi.org/10.1038/nature.2012.9796.

  23. Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel approaches, drug candidates, and targets in pain drug discovery. J Med Chem. 2021;64(10):6523–48.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenblum A, Marsch LA, Joseph H, Portenoy RK. Opioids and the treatment of chronic pain: controversies, current status, and future directions. Exp Clin Psychopharmacol. 2008;16(5):405–16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Woolf CJ. Capturing novel non-opioid pain targets. Biol Psychiatry. 2020;87(1):74–81.

    Article  PubMed  Google Scholar 

  26. Jeste DV, Maglione JE. Treating older adults with schizophrenia: challenges and opportunities. Schizophr Bull. 2013;39(5):966–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ban TA. Fifty years chlorpromazine: a historical perspective. Neuropsychiatr Dis Treat. 2007;3(4):495–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. New JS. The discovery and development of buspirone: a new approach to the treatment of anxiety. Med Res Rev. 1990;10(3):283–326.

    Article  CAS  PubMed  Google Scholar 

  29. Riblet LA, Eison AS, Eison MS, Taylor DP, Temple DL, VanderMaelen CP. Neuropharmacology of buspirone. Psychopathology. 1984;17(Suppl 3):69–78.

    Article  CAS  PubMed  Google Scholar 

  30. Rose M, Devine J. Assessment of patient-reported symptoms of anxiety. Dialogues Clin Neurosci. 2014;16(2):197–211.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aulner N, Danckaert A, Ihm J, Shum D, Shorte SL. Next-generation phenotypic screening in early drug discovery for infectious diseases. Trends Parasitol. 2019;35(7):559–70.

    Article  PubMed  Google Scholar 

  32. Katsuno K, Burrows JN, Duncan K, van Huijsduijnen RH, Kaneko T, Kita K, et al. Hit and lead criteria in drug discovery for infectious diseases of the develo** world. Nat Rev Drug Discov. 2015;14(11):751–8.

    Article  CAS  PubMed  Google Scholar 

  33. Van Voorhis WC, Hol WG, Myler PJ, Stewart LJ. The role of medical structural genomics in discovering new drugs for infectious diseases. PLoS Comput Biol. 2009;5(10):e1000530.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Plackett B. No money for new drugs. Nature. 2020;586:S50–S2.

    Article  CAS  Google Scholar 

  35. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.

    Article  PubMed  Google Scholar 

  36. Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther. 2014;6(4):37.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berk C, Sabbagh MN. Successes and failures for drugs in late-stage development for Alzheimer’s disease. Drugs Aging. 2013;30(10):783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Husna Ibrahim N, Yahaya MF, Mohamed W, Teoh SL, Hui CK, Kumar J. Pharmacotherapy of Alzheimer’s disease: seeking clarity in a time of uncertainty. Front Pharmacol. 2020;11:261.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opin Investig Drugs. 2017;26(6):735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004;104(1):29–45.

    Article  CAS  PubMed  Google Scholar 

  41. Hajal C, Le Roi B, Kamm RD, Maoz BM. Biology and models of the blood–brain barrier. Annu Rev Biomed Eng. 2021;23(1):359–84.

    Article  CAS  PubMed  Google Scholar 

  42. Wilhelm I, Krizbai IA. In vitro models of the blood–brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014;11(7):1949–63.

    Article  CAS  PubMed  Google Scholar 

  43. Morrison J, Schwartz TL. Adolescent angst or true intent? Suicidal behavior, risk, and neurobiological mechanisms in depressed children and teenagers taking antidepressants. Int J Emerg Ment Health. 2014;16(1):247–50.

    PubMed  Google Scholar 

  44. Henry A, Kisicki MD, Varley C. Efficacy and safety of antidepressant drug treatment in children and adolescents. Mol Psychiatry. 2012;17(12):1186–93.

    Article  CAS  PubMed  Google Scholar 

  45. Campos MSA, Ayres LR, Morelo MRS, Carizio FAM, Pereira LRL. Comparative efficacy of antiepileptic drugs for patients with generalized epileptic seizures: systematic review and network meta-analyses. Int J Clin Pharm. 2018;40(3):589–98.

    Article  CAS  PubMed  Google Scholar 

  46. Johannessen Landmark C, Johannessen SI, Patsalos PN. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin Drug Metab Toxicol. 2020;16(3):227–38.

    Article  CAS  PubMed  Google Scholar 

  47. Yang S, Wang B, Han X. Models for predicting treatment efficacy of antiepileptic drugs and prognosis of treatment withdrawal in epilepsy patients. Acta Epileptologica. 2021;3(1):1.

    Article  CAS  Google Scholar 

  48. Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci. 2018;21(10):1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gitler AD, Dhillon P, Shorter J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech. 2017;10(5):499–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Slanzi A, Iannoto G, Rossi B, Zenaro E, Constantin G. In vitro models of neurodegenerative diseases. Front Cell Dev Biol. 2020;8:328.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rubin R. Recently approved Alzheimer drug raises questions that might never be answered. JAMA. 2021;326(6):469–72.

    Article  PubMed  Google Scholar 

  52. Mullard A. Failure of first anti-tau antibody in Alzheimer disease highlights risks of history repeating. Nat Rev Drug Discov. 2021;20(1):3–5.

    Article  CAS  PubMed  Google Scholar 

  53. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66(5):646–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Boer AS, Koszka K, Kiskinis E, Suzuki N, Davis-Dusenbery Brandi N, Eggan K. Genetic validation of a therapeutic target in a mouse model of ALS. Sci Transl Med. 2014;6(248):248ra104.

    PubMed  Google Scholar 

  55. Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017;133(2):155–75.

    Article  CAS  PubMed  Google Scholar 

  56. Hauser SL, Cree BAC. Treatment of multiple sclerosis: a review. Am J Med. 2020;133(12):1380–90.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crous-Bou M, Minguillón C, Gramunt N, Molinuevo JL. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther. 2017;9(1):71.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Grossberg GT, Tong G, Burke AD, Tariot PN. Present algorithms and future treatments for Alzheimer’s disease. J Alzheimers Dis. 2019;67(4):1157–71.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement. 2021;17(4):696–701.

    Article  PubMed  Google Scholar 

  60. Schneider L. A resurrection of aducanumab for Alzheimer’s disease. Lancet Neurol. 2020;19(2):111–2.

    Article  PubMed  Google Scholar 

  61. Selkoe DJ. Alzheimer disease and aducanumab: adjusting our approach. Nat Rev Neurol. 2019;15(7):365–6.

    Article  PubMed  Google Scholar 

  62. Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537(7618):50–6.

    Article  CAS  PubMed  Google Scholar 

  63. Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44(11):1188–90.

    Article  CAS  PubMed  Google Scholar 

  64. Møller RS, Heron SE, Larsen LH, Lim CX, Ricos MG, Bayly MA, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia. 2015;56(9):e114–20.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Quraishi IH, Stern S, Mangan KP, Zhang Y, Ali SR, Mercier MR, et al. An epilepsy-associated KCNT1 mutation enhances excitability of human iPSC-derived neurons by increasing Slack K(Na) currents. J Neurosci Off J Soc Neurosci. 2019;39(37):7438–49.

    Article  CAS  Google Scholar 

  66. Zhou P, He N, Zhang JW, Lin ZJ, Wang J, Yan LM, et al. Novel mutations and phenotypes of epilepsy-associated genes in epileptic encephalopathies. Genes Brain Behav. 2018;17(8):e12456.

    Article  CAS  PubMed  Google Scholar 

  67. Lee US, Cui J. {beta} subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. J Physiol. 2009;587(Pt 7):1481–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liang L, Li X, Moutton S, Schrier Vergano SA, Cogné B, Saint-Martin A, et al. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum Mol Genet. 2019;28(17):2937–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bailey CS, Moldenhauer HJ, Park SM, Keros S, Meredith AL. KCNMA1-linked channelopathy. J Gen Physiol. 2019;151(10):1173–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Maljevic S, Lerche H. Chapter 2 – potassium channel genes and benign familial neonatal epilepsy. In: Steinlein OK, editor. Progress in brain research, vol. 213. Amsterdam: Elsevier; 2014. p. 17–53.

    Google Scholar 

  71. Gribkoff VK. The therapeutic potential of neuronal K V 7 (KCNQ) channel modulators: an update. Expert Opin Ther Targets. 2008;12(5):565–81.

    Article  CAS  PubMed  Google Scholar 

  72. Maljevic S, Wuttke TV, Seebohm G, Lerche H. KV7 channelopathies. Pflugers Arch. 2010;460(2):277–88.

    Article  CAS  PubMed  Google Scholar 

  73. Yang W-P, Levesque PC, Little WA, Conder ML, Ramakrishnan P, Neubauer MG, et al. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy*. J Biol Chem. 1998;273(31):19419–23.

    Article  CAS  PubMed  Google Scholar 

  74. Niday Z, Tzingounis AV. Potassium channel gain of function in epilepsy: an unresolved paradox. Neuroscientist. 2018;24(4):368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Association AP. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Association; 2013.

    Book  Google Scholar 

  76. Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? Dialogues Clin Neurosci. 2010;12(1):7–23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu C, Kanazawa T, Tian Y, Mohamed Saini S, Mancuso S, Mostaid MS, et al. The schizophrenia genetics knowledgebase: a comprehensive update of findings from candidate gene studies. Transl Psychiatry. 2019;9(1):205.

    Article  PubMed  PubMed Central  Google Scholar 

  78. McCutcheon RA, Reis Marques T, Howes OD. Schizophrenia—an overview. JAMA Psychiat. 2020;77(2):201–10.

    Article  Google Scholar 

  79. Talkowski ME, Seltman H, Bassett AS, Brzustowicz LM, Chen X, Chowdari KV, et al. Evaluation of a susceptibility gene for schizophrenia: genotype based meta-analysis of RGS4 polymorphisms from thirteen independent samples. Biol Psychiatry. 2006;60(2):152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turner JA, Smyth P, Macciardi F, Fallon JH, Kennedy JL, Potkin SG. Imaging phenotypes and genotypes in schizophrenia. Neuroinformatics. 2006;4(1):21–49.

    Article  PubMed  Google Scholar 

  81. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146(2):247–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. De Rubeis S, Bagni C. Fragile X mental retardation protein control of neuronal mRNA metabolism: insights into mRNA stability. Mol Cell Neurosci. 2010;43(1):43–50.

    Article  PubMed  Google Scholar 

  83. Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16(10):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Brown MR, Kronengold J, Gazula VR, Chen Y, Strumbos JG, Sigworth FJ, et al. Fragile X mental retardation protein controls gating of the sodium-activated potassium channel Slack. Nat Neurosci. 2010;13(7):819–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng PY, Klyachko VA. Channelopathies in fragile X syndrome. Nat Rev Neurosci. 2021;22(5):275–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang Y, Brown MR, Hyland C, Chen Y, Kronengold J, Fleming MR, et al. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with Slack potassium channels. J Neurosci Off J Soc Neurosci. 2012;32(44):15318–27.

    Article  CAS  Google Scholar 

  87. Bagni C, Zukin RS. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron. 2019;101(6):1070–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crawford DC, Acuña JM, Sherman SL. FMR1 and the fragile X syndrome: human genome epidemiology review. Genet Med. 2001;3(5):359–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Primers. 2017;3:17065.

    Article  PubMed  Google Scholar 

  90. Tsuang MT, Bar JL, Stone WS, Faraone SV. Gene-environment interactions in mental disorders. World Psychiatry. 2004;3(2):73–83.

    PubMed  PubMed Central  Google Scholar 

  91. Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet. 2002;11(12):1373–80.

    Article  CAS  PubMed  Google Scholar 

  92. Huang MW, Lin YJ, Chang CW, Lei FJ, Ho EP, Liu RS, et al. RGS4 deficit in prefrontal cortex contributes to the behaviors related to schizophrenia via system x(c)(-)-mediated glutamatergic dysfunction in mice. Theranostics. 2018;8(17):4781–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Levitt P, Ebert P, Mirnics K, Nimgaonkar VL, Lewis DA. Making the case for a candidate vulnerability gene in schizophrenia: convergent evidence for regulator of G-protein signaling 4 (RGS4). Biol Psychiatry. 2006;60(6):534–7.

    Article  CAS  PubMed  Google Scholar 

  94. Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293–301.

    Article  CAS  PubMed  Google Scholar 

  95. Schwarz E. A gene-based review of RGS4 as a putative risk gene for psychiatric illness. Am J Med Genet B Neuropsychiatr Genet. 2018;177(2):267–73.

    Article  PubMed  Google Scholar 

  96. Xu FL, Yao J, Wu X, **a X, **ng JX, Xuan JF, et al. Association analysis between SNPs in the promoter region of RGS4 and schizophrenia in the Northern Chinese Han population. Neuropsychiatr Dis Treat. 2020;16:985–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Blazer LL, Storaska AJ, Jutkiewicz EM, Turner EM, Calcagno M, Wade SM, et al. Selectivity and anti-Parkinson’s potential of thiadiazolidinone RGS4 inhibitors. ACS Chem Neurosci. 2015;6(6):911–9.

    Article  CAS  PubMed  Google Scholar 

  98. Roof RA, Sobczyk-Kojiro K, Turbiak AJ, Roman DL, Pogozheva ID, Blazer LL, et al. Novel peptide ligands of RGS4 from a focused one-bead, one-compound library. Chem Biol Drug Des. 2008;72(2):111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Burrows EL, Hannan AJ. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol Psychol. 2016;116:82–9.

    Article  PubMed  Google Scholar 

  100. Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol. 2011;164(4):1162–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In vitro and in vivo models for the investigation of potential drugs against schizophrenia. Biomol Ther. 2020;10(1):160.

    Google Scholar 

  102. Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, et al. An overview of animal models related to schizophrenia. Can J Psychiatr. 2019;64(1):5–17.

    Article  Google Scholar 

  103. Psychiatric drug discovery on the couch. Nat Rev Drug Discov. 2007;6(3):171.

    Google Scholar 

  104. Buckley PF, Stahl SM. Pharmacological treatment of negative symptoms of schizophrenia: therapeutic opportunity or cul-de-sac? Acta Psychiatr Scand. 2007;115(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  105. Kantrowitz JT. Managing negative symptoms of schizophrenia: how far have we come? CNS Drugs. 2017;31(5):373–88.

    Article  PubMed  Google Scholar 

  106. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia. Nat Rev Dis Primers. 2015;1:15067.

    Article  PubMed  Google Scholar 

  107. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  108. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2(5):e141.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ayano G, Tesfaw G, Shumet S. The prevalence of schizophrenia and other psychotic disorders among homeless people: a systematic review and meta-analysis. BMC Psychiatry. 2019;19(1):370.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Review: haloperidol is effective for schizophrenia but increases parkinsonism, dystonia, and akathisia. Evid Based Ment Health. 2001;4(4):112.

    Google Scholar 

  111. Beresford R, Ward A. Haloperidol decanoate. A preliminary review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in psychosis. Drugs. 1987;33(1):31–49.

    Article  CAS  PubMed  Google Scholar 

  112. Ali Z, Roque A, El-Mallakh RS. A unifying theory for the pathoetiologic mechanism of tardive dyskinesia. Med Hypotheses. 2020;140:109682.

    Article  CAS  PubMed  Google Scholar 

  113. Caroff SN. Recent advances in the pharmacology of tardive dyskinesia. Clin Psychopharmacol Neurosci. 2020;18(4):493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Crilly J. The history of clozapine and its emergence in the US market: a review and analysis. Hist Psychiatry. 2007;18(1):39–60.

    Article  PubMed  Google Scholar 

  115. Khokhar JY, Henricks AM, Sullivan EDK, Green AI. Unique effects of clozapine: a pharmacological perspective. Adv Pharmacol (San Diego, Calif). 2018;82:137–62.

    Article  CAS  Google Scholar 

  116. Nucifora FC Jr, Mihaljevic M, Lee BJ, Sawa A. Clozapine as a model for antipsychotic development. Neurotherapeutics. 2017;14(3):750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Siskind D, McCartney L, Goldschlager R, Kisely S. Clozapine v. first- and second-generation antipsychotics in treatment-refractory schizophrenia: systematic review and meta-analysis. Br J Psychiatry J Ment Sci. 2016;209(5):385–92.

    Article  Google Scholar 

  118. Chen J, Calhoun VD, Lin D, Perrone-Bizzozero NI, Bustillo JR, Pearlson GD, et al. Shared genetic risk of schizophrenia and gray matter reduction in 6p22.1. Schizophr Bull. 2019;45(1):222–32.

    Article  PubMed  Google Scholar 

  119. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17(6):782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scarr E, Gibbons A, Neo J, Udawela M, Dean B. Cholinergic connectivity: it’s implications for psychiatric disorders. Front Cell Neurosci. 2013;7:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul). 2012;20(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  122. Agid Y, Buzsáki G, Diamond DM, Frackowiak R, Giedd J, Girault J-A, et al. How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov. 2007;6(3):189–201.

    Article  CAS  PubMed  Google Scholar 

  123. Brady LS, Potter WZ, Gordon JA. Redirecting the revolution: new developments in drug development for psychiatry. Expert Opin Drug Discovery. 2019;14(12):1213–9.

    Article  CAS  Google Scholar 

  124. Califf RM. Biomarker definitions and their applications. Exp Biol Med. 2018;243(3):213–21.

    Article  CAS  Google Scholar 

  125. Gómez-Nieto R, Hormigo S, López DE. Prepulse inhibition of the auditory startle reflex assessment as a hallmark of brainstem sensorimotor gating mechanisms. Brain Sci. 2020;10(9):639.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jones CK, Shannon HE. Lesions of the laterodorsal tegmental nucleus disrupt prepulse inhibition of the acoustic startle reflex. Pharmacol Biochem Behav. 2004;78(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  127. Mena A, Ruiz-Salas JC, Puentes A, Dorado I, Ruiz-Veguilla M, De la Casa LG. Reduced prepulse inhibition as a biomarker of schizophrenia. Front Behav Neurosci. 2016;10:202.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Swerdlow NR, Weber M, Qu Y, Light GA, Braff DL. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology. 2008;199(3):331–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wynn JK, Dawson ME, Schell AM, McGee M, Salveson D, Green MF. Prepulse facilitation and prepulse inhibition in schizophrenia patients and their unaffected siblings. Biol Psychiatry. 2004;55(5):518–23.

    Article  PubMed  Google Scholar 

  130. Geyer MA, Braff DL. Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull. 1987;13(4):643–68.

    Article  CAS  PubMed  Google Scholar 

  131. Quednow BB, Ettinger U, Mössner R, Rujescu D, Giegling I, Collier DA, et al. The schizophrenia risk allele C of the TCF4 rs9960767 polymorphism disrupts sensorimotor gating in schizophrenia spectrum and healthy volunteers. J Neurosci Off J Soc Neurosci. 2011;31(18):6684–91.

    Article  CAS  Google Scholar 

  132. Quednow BB, Frommann I, Berning J, Kühn KU, Maier W, Wagner M. Impaired sensorimotor gating of the acoustic startle response in the prodrome of schizophrenia. Biol Psychiatry. 2008;64(9):766–73.

    Article  PubMed  Google Scholar 

  133. Koblan KS, Kent J, Hopkins SC, Krystal JH, Cheng H, Goldman R, et al. A non-D2-receptor-binding drug for the treatment of schizophrenia. N Engl J Med. 2020;382(16):1497–506.

    Article  CAS  PubMed  Google Scholar 

  134. Lipina T, Weiss K, Roder J. The ampakine CX546 restores the prepulse inhibition and latent inhibition deficits in mGluR5-deficient mice. Neuropsychopharmacology. 2007;32(4):745–56.

    Article  CAS  PubMed  Google Scholar 

  135. Rozycki M, Satterthwaite TD, Koutsouleris N, Erus G, Doshi J, Wolf DH, et al. Multisite machine learning analysis provides a robust structural imaging signature of schizophrenia detectable across diverse patient populations and within individuals. Schizophr Bull. 2018;44(5):1035–44.

    Article  PubMed  Google Scholar 

  136. Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci. 2019;12:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. du Bois TM, Deng C, Huang X-F. Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2005;29(6):878–88.

    Article  Google Scholar 

  138. Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013;9(9):948–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic biomarkers for schizophrenia. Int J Mol Sci. 2017;18(4):733.

    Article  PubMed  Google Scholar 

  140. Kirkpatrick B, Miller BJ. Inflammation and schizophrenia. Schizophr Bull. 2013;39(6):1174–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Müller N, Weidinger E, Leitner B, Schwarz MJ. The role of inflammation in schizophrenia. Front Neurosci. 2015;9:372.

    Article  PubMed  PubMed Central  Google Scholar 

  142. González-Vivas C, García-Martí G, Soldevila-Matías P, Sanz-Requena R, Aguilar EJ, Castro-Bleda MJ, et al. First-episode psychotic patients showed longitudinal brain changes using fMRI with an emotional auditory paradigm. Front Psych. 2020;11:1374.

    Google Scholar 

  143. Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in schizophrenia. Neuroimaging Clin N Am. 2020;30(1):73–83.

    Article  PubMed  Google Scholar 

  144. Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatr. 2021;178(6):509–21.

    Article  PubMed  Google Scholar 

  145. Oh J, Oh B-L, Lee K-U, Chae J-H, Yun K. Identifying schizophrenia using structural MRI with a deep learning algorithm. Front Psych. 2020;11:16.

    Article  Google Scholar 

  146. Specht K. Current challenges in translational and clinical fMRI and future directions. Front Psych. 2020;10:924.

    Article  Google Scholar 

  147. Suhara T, Chaki S, Kimura H, Furusawa M, Matsumoto M, Ogura H, et al. Strategies for utilizing neuroimaging biomarkers in CNS drug discovery and development: CINP/JSNP Working Group report. Int J Neuropsychopharmacol. 2017;20(4):285–94.

    CAS  PubMed  Google Scholar 

  148. Wheeler AL, Voineskos AN. A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci. 2014;8:653.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kim MA, Tura E, Potkin SG, Fallon JH, Manoach DS, Calhoun VD, et al. Working memory circuitry in schizophrenia shows widespread cortical inefficiency and compensation. Schizophr Res. 2010;117(1):42–51.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yang B, Chen Y, Shao QM, Yu R, Li WB, Guo GQ, et al. Schizophrenia classification using fMRI data based on a multiple feature image capsule network ensemble. IEEE Access. 2019;7:109956–68.

    Article  Google Scholar 

  151. Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA. Antipsychotic drug effects in schizophrenia: a review of longitudinal FMRI investigations and neural interpretations. Curr Med Chem. 2013;20(3):428–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Towlson EK, Vértes PE, Müller-Sedgwick U, Ahnert SE. Brain networks reveal the effects of antipsychotic drugs on schizophrenia patients and controls. Front Psych. 2019;10:611.

    Article  Google Scholar 

  153. Borsook D, Becerra L, Fava M. Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry. 2013;3(7):e282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brady LS, Winsky L, Goodman W, Oliveri ME, Stover E. NIMH initiatives to facilitate collaborations among industry, academia, and government for the discovery and clinical testing of novel models and drugs for psychiatric disorders. Neuropsychopharmacology. 2009;34(1):229–43.

    Article  PubMed  Google Scholar 

  155. Girgis RR, Zoghbi AW, Javitt DC, Lieberman JA. The past and future of novel, non-dopamine-2 receptor therapeutics for schizophrenia: a critical and comprehensive review. J Psychiatr Res. 2019;108:57–83.

    Article  PubMed  Google Scholar 

  156. Markou A, Chiamulera C, Geyer MA, Tricklebank M, Steckler T. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology. 2009;34(1):74–89.

    Article  CAS  PubMed  Google Scholar 

  157. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14(6):383–400.

    Article  CAS  PubMed  Google Scholar 

  159. Lee G, Zhou Y. NMDAR hypofunction animal models of schizophrenia. Front Mol Neurosci. 2019;12:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Goff DC, Leahy L, Berman I, Posever T, Herz L, Leon AC, et al. A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. J Clin Psychopharmacol. 2001;21(5):484–7.

    Article  CAS  PubMed  Google Scholar 

  161. Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem. 2011;116(2):164–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Rutigliano G, Accorroni A, Zucchi R. The case for TAAR1 as a modulator of central nervous system function. Front Pharmacol. 2018;8:987.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lencz T, Yu J, Khan RR, Flaherty E, Carmi S, Lam M, et al. Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron. 2021;109(9):1465–78.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Duggan L, Fenton M, Rathbone J, Dardennes R, El-Dosoky A, Indran S. Olanzapine for schizophrenia. Cochrane Database Syst Rev. 2005;(2):CD001359.

    Google Scholar 

  165. Huang J, Hei G-R, Yang Y, Liu C-C, **ao J-M, Long Y-J, et al. Increased appetite plays a key role in olanzapine-induced weight gain in first-episode schizophrenia patients. Front Pharmacol. 2020;11:739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mathews J, Newcomer JW, Mathews JR, Fales CL, Pierce KJ, Akers BK, et al. Neural correlates of weight gain with olanzapine. Arch Gen Psychiatry. 2012;69(12):1226–37.

    Article  CAS  PubMed  Google Scholar 

  167. Correll CU, Newcomer JW, Silverman B, DiPetrillo L, Graham C, Jiang Y, et al. Effects of olanzapine combined with samidorphan on weight gain in schizophrenia: a 24-week phase 3 study. Am J Psychiatry. 2020;177(12):1168–78.

    Article  PubMed  Google Scholar 

  168. Correll CU, Davis RE, Weingart M, Saillard J, O’Gorman C, Kane JM, et al. Efficacy and safety of Lumateperone for treatment of schizophrenia: a randomized clinical trial. JAMA Psychiat. 2020;77(4):349–58.

    Article  Google Scholar 

  169. Greenwood J, Acharya RB, Marcellus V, Rey JA. Lumateperone: a novel antipsychotic for schizophrenia. Ann Pharmacother. 2021;55(1):98–104.

    Article  CAS  PubMed  Google Scholar 

  170. Snyder GL, Vanover KE, Davis RE, Li P, Fienberg A, Mates S. Chapter eleven – a review of the pharmacology and clinical profile of lumateperone for the treatment of schizophrenia. In: Zorn SH, editor. Advances in pharmacology, vol. 90. Cambridge, MA: Academic Press; 2021. p. 253–76.

    Google Scholar 

  171. Snyder GL, Vanover KE, Zhu H, Miller DB, O’Callaghan JP, Tomesch J, et al. Functional profile of a novel modulator of serotonin, dopamine, and glutamate neurotransmission. Psychopharmacology. 2015;232(3):605–21.

    Article  CAS  PubMed  Google Scholar 

  172. Lynch G. Glutamate-based therapeutic approaches: ampakines. Curr Opin Pharmacol. 2006;6(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  173. Lynch G, Gall C. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci. 2013;7:143.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Correll CU, Koblan KS, Hopkins SC, Kent J, Cheng H, Goldman R, et al. Safety and effectiveness of SEP-363856 in schizophrenia: results of a 6-month, open-label extension study. CNS Spectr. 2021;26(2):148–9.

    Article  Google Scholar 

  175. Begni V, Sanson A, Luoni A, Sensini F, Grayson B, Munni S, et al. Towards novel treatments for schizophrenia: molecular and behavioural signatures of the psychotropic agent SEP-363856. Int J Mol Sci. 2021;22(8):4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Dedic N, Jones PG, Hopkins SC, Lew R, Shao L, Campbell JE, et al. SEP-363856, a novel psychotropic agent with a unique, non-D(2) receptor mechanism of action. J Pharmacol Exp Ther. 2019;371(1):1–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentin K. Gribkoff or Leonard K. Kaczmarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gribkoff, V.K., Kaczmarek, L.K. (2023). The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. In: Macaluso, M., Preskorn, S.H., Shelton, R.C. (eds) Drug Development in Psychiatry. Advances in Neurobiology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-031-21054-9_11

Download citation

Publish with us

Policies and ethics

Navigation