• 127 Accesses

Abstract

This chapter provides a brief description of do** strategy associated with achieving certain awareness of its basic principles and concepts. Its application enhances photocatalytic and photoelectrochemical performances of designated oxide materials that include not only binary compounds such as TiO2, ZnO, WO3, Cu2O, etc. but also ternary compounds too. Specifically, a variety of synthesis and post-synthesis approaches to fabricating doped metal oxides are outlined, including several methods developed recently or seldom discussed in detail. Furthermore, a systematic examination is provided toward reaching a certain understanding of changes and evolution that electronic and geometrical structures have proceeded and their influence on basic characteristics and properties of doped metal oxides. It is also demonstrated how the incorrect employment of do** strategy might lead to the negative outcome when the advancement of designated metal oxides cannot be realized and oppositely their performances become degraded with regard to the demonstrated efficiency and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sensors Actuators B Chem. 196, 413–420 (2014). https://doi.org/10.1016/j.snb.2014.01.068

    Article  CAS  Google Scholar 

  2. W.-S. Liu, S.-H. Huang, C.-F. Liu, C.-W. Hu, T.-Y. Chen, T.-P. Perng, Nitrogen do** in Ta2O5 and its implication for photocatalytic H2 production. Appl. Surf. Sci. 459, 477–482 (2018). https://doi.org/10.1016/j.apsusc.2018.07.185

    Article  CAS  Google Scholar 

  3. F. Mehmood, J. Iqbal, M. Ismail, A. Mehmood, Ni doped WO3 nanoplates: An excellent photocatalyst and novel nanomaterial for enhanced anticancer activities. J. Alloys Compd. 746, 729–738 (2018). https://doi.org/10.1016/j.jallcom.2018.01.409

    Article  CAS  Google Scholar 

  4. G.M. Dalpian, J.R. Chelikowsky, Self-purification in semiconductor nanocrystals. Phys. Rev. Lett. 96, 226802 (2006). https://doi.org/10.1103/PhysRevLett.96.226802

    Article  CAS  Google Scholar 

  5. S. Manu, M.A. Khadar, Non-uniform distribution of dopant iron ions in TiO2 nanocrystals probed by X-ray diffraction, Raman scattering, photoluminescence and photocatalysis. J. Mater. Chem. C 3, 1846–1853 (2015). https://doi.org/10.1039/C4TC02362E

    Article  CAS  Google Scholar 

  6. A.K. Mishra, D. Das, Investigation on Fe-doped ZnO nanostructures prepared by a chemical route. Mater. Sci. Eng. B 171, 5–10 (2010). https://doi.org/10.1016/j.mseb.2010.03.045

    Article  CAS  Google Scholar 

  7. B. Maibam, S. Baruah, S. Kumar, Photoluminescence and intrinsic ferromagnetism of Fe doped zinc oxide. SN Appl. Sci. 2, 1712 (2020). https://doi.org/10.1007/s42452-020-03519-y

    Article  CAS  Google Scholar 

  8. V. Gurylev, T.P. Perng, Defect engineering of ZnO: Review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 41, 4977–4996 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.03.031

    Article  CAS  Google Scholar 

  9. C.-Y. Su, C.-C. Wang, Y.-C. Hsueh, V. Gurylev, C.-C. Kei, T.-P. Perng, Enabling high solubility of ZnO in TiO2 by nanolamination of atomic layer deposition. Nanoscale 7, 19222–19230 (2015). https://doi.org/10.1039/C5NR06264K

    Article  CAS  Google Scholar 

  10. C.-Y. Su, C.-C. Wang, Y.-C. Hsueh, V. Gurylev, C.-C. Kei, T.-P. Perng, Fabrication of highly homogeneous Al-doped TiO2 nanotubes by nanolamination of atomic layer deposition. J. Am. Ceram. Soc. 100, 4988–4993 (2017). https://doi.org/10.1111/jace.15044

    Article  CAS  Google Scholar 

  11. S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog. Nat. Sci. 24, 142–149 (2014). https://doi.org/10.1016/j.pnsc.2014.03.009

    Article  CAS  Google Scholar 

  12. H.-Y. Wang, J. Chen, F.-X. **-induced structural evolution from rutile to anatase: Formation of Nb-doped anatase TiO2 nanosheets with high photocatalytic activity. J. Mater. Chem. A 4, 6926–6932 (2016). https://doi.org/10.1039/C5TA08202A

    Article  CAS  Google Scholar 

  13. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  14. M.L.M. Napi, S.M. Sultan, R. Ismail, M.K. Ahmad, G.M.T. Chai, Optimization of a hydrothermal growth process for low resistance 1D fluorine-doped zinc oxide nanostructures. J. Nanomater. 2019, e4574507 (2019). https://doi.org/10.1155/2019/4574507

    Article  CAS  Google Scholar 

  15. H.-Y. Ai, J.-W. Shi, R.-X. Duan, J.-W. Chen, H.-J. Cui, M.-L. Fu, Sol-gel to prepare nitrogen doped TiO2 nanocrystals with exposed {001} facets and high visible-light photocatalytic performance. Int. J. Photoenergy 2014, e724910 (2014). https://doi.org/10.1155/2014/724910

    Article  CAS  Google Scholar 

  16. M. Khairy, W. Zakaria, Effect of metal-do** of TiO2 nanoparticles on their photocatalytic activities toward removal of organic dyes. Egypt. J. Pet. 23, 419–426 (2014). https://doi.org/10.1016/j.ejpe.2014.09.010

    Article  Google Scholar 

  17. V. Gurylev, Case study I defect engineering of TiO2, in Nanostructured Photocatalyst via Defect Engineering: Basic Knowledge and Recent Advances, ed. by V. Gurylev, (Springer, Cham, 2021), pp. 145–187. https://doi.org/10.1007/978-3-030-81911-8_5

    Chapter  Google Scholar 

  18. H. Tian, J. Ma, K. Li, J. Li, Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram. Int. 35, 1289–1292 (2009). https://doi.org/10.1016/j.ceramint.2008.05.003

    Article  CAS  Google Scholar 

  19. L. Ghazaryan, S. Handa, P. Schmitt, V. Beladiya, V. Roddatis, A. Tünnermann, A. Szeghalmi, Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology 32, 095709 (2020). https://doi.org/10.1088/1361-6528/abcbc1

    Article  CAS  Google Scholar 

  20. N.H. Hong, W. Prellier, J. Sakai, A. Hassini, Fe- and Ni-doped TiO2 thin films grown on LaAlO3 and SrTiO3 substrates by laser ablation. Appl. Phys. Lett. 84, 2850–2852 (2004). https://doi.org/10.1063/1.1695103

    Article  CAS  Google Scholar 

  21. S. Somekawa, Y. Kusumoto, M. Ikeda, B. Ahmmad, Y. Horie, Fabrication of N-doped TiO2 thin films by laser ablation method: Mechanism of N-do** and evaluation of the thin films. Catal. Commun. 9, 437–440 (2008). https://doi.org/10.1016/j.catcom.2007.07.035

    Article  CAS  Google Scholar 

  22. A. Merenda, A. Rana, A. Guirguis, D.M. Zhu, L. Kong, L.F. Dumée, Enhanced visible light sensitization of N-doped TiO2 nanotubes containing Ti-oxynitride species fabricated via electrochemical anodization of titanium nitride. J. Phys. Chem. C 123, 2189–2201 (2019). https://doi.org/10.1021/acs.jpcc.8b09762

    Article  CAS  Google Scholar 

  23. V. Gurylev, General principles of defect engineering, in Nanostructured Photocatalyst via Defect Engineering: Basic Knowledge and Recent Advances, ed. by V. Gurylev, (Springer, Cham, 2021), pp. 37–72. https://doi.org/10.1007/978-3-030-81911-8_2

    Chapter  Google Scholar 

  24. J.C. Dhar, A. Mondal, S. Bhattacharya, N.K. Singh, C. Ngangbam, K.K. Chattopadhyay, Band gap tailoring of TiO2 nanowires by nitrogen do** under N2/Ar plasma environment. J. Nanosci. Nanotechnol. 15, 3951–3955 (2015). https://doi.org/10.1166/jnn.2015.9502

    Article  CAS  Google Scholar 

  25. B. Liu, H.M. Chen, C. Liu, S.C. Andrews, C. Hahn, P. Yang, Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 135, 9995–9998 (2013). https://doi.org/10.1021/ja403761s

    Article  CAS  Google Scholar 

  26. M. Ismael, Highly effective ruthenium-doped TiO2 nanoparticles photocatalyst for visible-light-driven photocatalytic hydrogen production. New J. Chem. 43, 9596–9605 (2019). https://doi.org/10.1039/C9NJ02226K

    Article  CAS  Google Scholar 

  27. J. Sun, L. Qiao, S. Sun, G. Wang, Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. J. Hazard. Mater. 155, 312–319 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.062

    Article  CAS  Google Scholar 

  28. Y.-S. Kim, W.-P. Tai, Electrical and optical properties of Al-doped ZnO thin films by sol–gel process. Appl. Surf. Sci. 253, 4911–4916 (2007). https://doi.org/10.1016/j.apsusc.2006.10.068

    Article  CAS  Google Scholar 

  29. R.Y.N. Reis, E.B. Aline, M.J.S. Lima, J.F. Costa, J.P.C. Cruz-Filho, R.S. Moura, G.E.L. Santos, Enhanced photoelectrocatalytic performance of ZnO films doped with N2 by a facile electrochemical method. Surf. Interfaces 21, 100675 (2020). https://doi.org/10.1016/j.surfin.2020.100675

    Article  CAS  Google Scholar 

  30. K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater. 134, 195–202 (2010). https://doi.org/10.1016/j.micromeso.2010.05.026

    Article  CAS  Google Scholar 

  31. Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M. Rezaei Darvishi, ZnO photocatalyst revisited: Effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind. Eng. Chem. Res. 59, 15894–15911 (2020). https://doi.org/10.1021/acs.iecr.0c03192

    Article  CAS  Google Scholar 

  32. M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, S. Shen, N do** to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Sci. Rep. 5, 12925 (2015). https://doi.org/10.1038/srep12925

    Article  CAS  Google Scholar 

  33. Y. Liu, Y. Li, W. Li, S. Han, C. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light. Appl. Surf. Sci. 258, 5038–5045 (2012). https://doi.org/10.1016/j.apsusc.2012.01.080

    Article  CAS  Google Scholar 

  34. X. Liu, H. Zhai, P. Wang, Q. Zhang, Z. Wang, Y. Liu, Y. Dai, B. Huang, X. Qin, X. Zhang, Synthesis of a WO3 photocatalyst with high photocatalytic activity and stability using synergetic internal Fe3+ do** and superficial Pt loading for ethylene degradation under visible-light irradiation. Cat. Sci. Technol. 9, 652–658 (2019). https://doi.org/10.1039/C8CY02375A

    Article  CAS  Google Scholar 

  35. S. Lubis, M. Sheilatina, Synthesis, characterization and photocatalytic activity of α-Fe2O3/bentonite composite prepared by mechanical milling. J. Phys. Conf. Ser. 1116, 042016 (2018). https://doi.org/10.1088/1742-6596/1116/4/042016

    Article  CAS  Google Scholar 

  36. H.K. Mulmudi, N. Mathews, X.C. Dou, L.F. **, S.S. Pramana, Y.M. Lam, S.G. Mhaisalkar, Controlled growth of hematite (α-Fe2O3) nanorod array on fluorine doped tin oxide: Synthesis and photoelectrochemical properties. Electrochem. Commun. 13, 951–954 (2011). https://doi.org/10.1016/j.elecom.2011.06.008

    Article  CAS  Google Scholar 

  37. R. Zhang, Y. Fang, T. Chen, F. Qu, Z. Liu, G. Du, A.M. Asiri, T. Gao, X. Sun, Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods Array by S do**. ACS Sustain. Chem. Eng. 5, 7502–7506 (2017). https://doi.org/10.1021/acssuschemeng.7b01799

    Article  CAS  Google Scholar 

  38. C.-Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, P. Schmuki, Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochem. Commun. 34, 308–311 (2013). https://doi.org/10.1016/j.elecom.2013.07.024

    Article  CAS  Google Scholar 

  39. L. An, X. Han, Y. Li, H. Wang, C. Hou, Q. Zhang, One step synthesis of self-doped F–Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 46, 3996–4006 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.250

    Article  CAS  Google Scholar 

  40. T.M. Suzuki, S. Saeki, K. Sekizawa, K. Kitazumi, N. Takahashi, T. Morikawa, Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-Type N-doped Ta2O5 photocathode active under visible light irradiation. Appl. Catal. B 202, 597–604 (2017). https://doi.org/10.1016/j.apcatb.2016.09.066

    Article  CAS  Google Scholar 

  41. Y. Zhao, X. Zhou, L. Ye, S. Chi Edman Tsang, Nanostructured Nb2O5 catalysts. NanoReviews 3, 17631 (2012). https://doi.org/10.3402/nano.v3i0.17631

    Article  CAS  Google Scholar 

  42. K. Su, H. Liu, Z. Gao, P. Fornasiero, F. Wang, Nb2O5-based photocatalysts. Adv. Sci. 8, 2003156 (2021). https://doi.org/10.1002/advs.202003156

    Article  CAS  Google Scholar 

  43. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: Fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683–15703 (2014). https://doi.org/10.1039/C4TA02561J

    Article  CAS  Google Scholar 

  44. A.K. Kulkarni, C.S. Praveen, Y.A. Sethi, R.P. Panmand, S.S. Arbuj, S.D. Naik, A.V. Ghule, B.B. Kale, Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 46, 14859–14868 (2017). https://doi.org/10.1039/C7DT02611K

    Article  CAS  Google Scholar 

  45. J.A. Oliveira, M.O. Reis, M.S. Pires, L.A.M. Ruotolo, T.C. Ramalho, C.R. Oliveira, L.C.T. Lacerda, F.G.E. Nogueira, Zn-doped Nb2O5 photocatalysts driven by visible-light: An experimental and theoretical study. Mater. Chem. Phys. 228, 160–167 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.062

    Article  CAS  Google Scholar 

  46. Y. Yang, S. Niu, D. Han, T. Liu, G. Wang, Y. Li, Progress in develo** metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy Mater. 7, 1700555 (2017). https://doi.org/10.1002/aenm.201700555

    Article  CAS  Google Scholar 

  47. B.B. Sapkota, S.R. Mishra, A simple ball milling method for the preparation of p-CuO/n-ZnO nanocomposite photocatalysts with high photocatalytic activity. J. Nanosci. Nanotechnol. 13, 6588–6596 (2013). https://doi.org/10.1166/jnn.2013.7544

    Article  CAS  Google Scholar 

  48. V. Gurylev, Defect engineering of other nanostructured semiconductors, in Nanostructured Photocatalyst via Defect Engineering: Basic Knowledge and Recent Advances, ed. by V. Gurylev, (Springer, Cham, 2021), pp. 281–318. https://doi.org/10.1007/978-3-030-81911-8_9

    Chapter  Google Scholar 

  49. X. Du, J. Huang, Y. Feng, Y. Ding, Flower−like 3D CuO microsphere acting as photocatalytic water oxidation catalyst. Chin. J. Catal. 37, 123–134 (2016). https://doi.org/10.1016/S1872-2067(15)61012-9

    Article  CAS  Google Scholar 

  50. T. Velusamy, A. Liguori, M. Macias-Montero, D.B. Padmanaban, D. Carolan, M. Gherardi, V. Colombo, P. Maguire, V. Svrcek, D. Mariotti, Ultra-small CuO nanoparticles with tailored energy-band diagram synthesized by a hybrid plasma-liquid process. Plasma Process. Polym. 14, 1600224 (2017). https://doi.org/10.1002/ppap.201600224

    Article  CAS  Google Scholar 

  51. D. Su, X. **e, S. Dou, G. Wang, CuO single crystal with exposed {001} facets – A highly efficient material for gas sensing and Li-ion battery applications. Sci. Rep. 4, 5753 (2014). https://doi.org/10.1038/srep05753

    Article  CAS  Google Scholar 

  52. B. Yan, Y. Wang, T. Jiang, X. Wu, Synthesis and enhanced photocatalytic property of La-doped CuO nanostructures by electrodeposition method. J. Mater. Sci. Mater. Electron. 27, 5389–5394 (2016). https://doi.org/10.1007/s10854-016-4439-z

    Article  CAS  Google Scholar 

  53. T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, M. Yu, Optical and photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol. 51, 58–64 (2016). https://doi.org/10.1002/crat.201500152

    Article  CAS  Google Scholar 

  54. M. Soldemo, J.H. Stenlid, Z. Besharat, M. Ghadami Yazdi, A. Önsten, C. Leygraf, M. Göthelid, T. Brinck, J. Weissenrieder, The surface structure of Cu2O (100). J. Phys. Chem. C 120, 4373–4381 (2016). https://doi.org/10.1021/acs.jpcc.5b11350

    Article  CAS  Google Scholar 

  55. A.H. Jayatissa, K. Guo, A.C. Jayasuriya, Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl. Surf. Sci. 255, 9474–9479 (2009). https://doi.org/10.1016/j.apsusc.2009.07.072

    Article  CAS  Google Scholar 

  56. X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, B. Yao, Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chem. Eng. J. 374, 316–327 (2019). https://doi.org/10.1016/j.cej.2019.05.177

    Article  CAS  Google Scholar 

  57. I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Azizi, Optical, structural, and photoelectrochemical properties of nanostructured Cl-doped Cu2O via electrochemical deposition. Solid State Sci. 83, 161–170 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.07.015

    Article  CAS  Google Scholar 

  58. R. Wang, J. Wu, 5 – Structure and basic properties of ternary metal oxides and their prospects for application in supercapacitors, in Metal oxides in supercapacitors, ed. by D. P. Dubal, P. Gomez-Romero, (Elsevier, 2017), pp. 99–132. https://doi.org/10.1016/B978-0-12-810464-4.00005-X

    Chapter  Google Scholar 

  59. J. Ke, M. Adnan Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: A review. Nano-Micro Lett. 10, 69 (2018). https://doi.org/10.1007/s40820-018-0222-4

    Article  CAS  Google Scholar 

  60. S.D. Ramarao, S.R. Kiran, V.R.K. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1−xSrxMoO4 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064

    Article  CAS  Google Scholar 

  61. S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394–4399 (2014). https://doi.org/10.1021/ic4031798

    Article  CAS  Google Scholar 

  62. S. Chen, S. Sun, H. Sun, W. Fan, X. Zhao, X. Sun, Experimental and theoretical studies on the enhanced photocatalytic activity of ZnWO4 nanorods by fluorine do**. J. Phys. Chem. C 114, 7680–7688 (2010). https://doi.org/10.1021/jp911952v

    Article  CAS  Google Scholar 

  63. Y. Su, L. Hou, C. Du, L. Peng, K. Guan, X. Wang, Rapid synthesis of Zn2+ doped SnWO4 nanowires with the aim of exploring do** effects on highly enhanced visible photocatalytic activities. RSC Adv. 2, 6266–6273 (2012). https://doi.org/10.1039/C2RA20401K

    Article  CAS  Google Scholar 

  64. V. Gurylev, Extrinsic defects in nanostructured semiconductors, in Nanostructured Photocatalyst via Defect Engineering: Basic Knowledge and Recent Advances, ed. by V. Gurylev, (Springer, Cham, 2021), pp. 319–348. https://doi.org/10.1007/978-3-030-81911-8_10

    Chapter  Google Scholar 

  65. V. Gurylev, A review on the development and advancement of Ta2O5 as a promising photocatalyst. Mater. Today Sustain. 18, 100131 (2022). https://doi.org/10.1016/j.mtsust.2022.100131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurylev, V. (2022). Strategy I: Do**. In: Advancement of Metal Oxide Materials for Photocatalytic Application. Springer, Cham. https://doi.org/10.1007/978-3-031-20553-8_2

Download citation

Publish with us

Policies and ethics

Navigation