Multivariate Adaptive Regression Splines for Stability Number of Unsupported Conical Slopes in Anisotropic and Heterogeneous Clays

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2022)

Abstract

The novel equation for determining the stability number of unsupported conical slopes in anisotropic and heterogeneous clays is presented in this study. Multivariate Adaptive Regression Splines (MARS) model ~ a machine learning approach, is adopted to build the close–form equation between input variables and output results, and also investigate the coupling effects among input variables by sensitive analysis. The artificial data for MARS model is 576 combinations of four input variables (i.e., the ratio between the height and the radius at the bottom slope, and the inclination angle of slope, the gradient of increasing undrained shear strength, ratio of anisotropic) corresponding to output results of stability number which is based on finite element limit analysis (FELA) results from a previous study. The results of the paper provide a guidance theory and effective tool for practical engineering in determining the stability number of unsupported conical slopes in anisotropic and heterogeneous clays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Britto, A.M., Kusakabe, O.: Stability of unsupported axisymmetric excavation in soft clay. Geotechnique 32(3), 261–270 (1982)

    Article  Google Scholar 

  2. Pastor, J., Turgeman, S.: Limit analysis in axisymmetrical problems Numerical determination of complete statistical solutions. Int. J. Mech. Sci. 24(2), 95–117 (1982)

    Article  MATH  Google Scholar 

  3. Lyamin, A.V., Sloan, S.W.: Lower bound limit analysis using non-linear programming. Int. J. Numer. Meth. Eng. 55, 573–611 (2002)

    Article  MATH  Google Scholar 

  4. Kumar, J., Chakraborty, D.: s for an unsupported vertical circular excavation in c- soil. Comput. Geotech. 39, 79–84 (2012)

    Article  Google Scholar 

  5. Kumar, J., Chakraborty, M., Sahoo, J.P.: Stability of unsupported vertical circular excavations. J. Geotech. Geoenvironmental Eng. 140(7), 04014028 (2014)

    Article  Google Scholar 

  6. Huynh, Q.T., Lai, V.Q., Shiau, J., Keawsawasvong, S., Mase, L.Z., Tra, H.T.: On the use of both diaphragm and secant pile walls for a basement upgrade project in Vietnam. Innov. Infrastruct. Solut. 7(1), 1 (2021). https://doi.org/10.1007/s41062-021-00625-7

    Article  Google Scholar 

  7. Huynh, Q.T., Lai, V.Q., Boonyatee, T., Keawsawasvong, S.: Verification of soil parameters of hardening soil model with small-strain stiffness for deep excavations in medium dense sand in Ho Chi Minh City, Vietnam. Innov. Infrastruct. Solut. 7(1), 1–20 (2022)

    Google Scholar 

  8. Huynh, Q.T., Lai, V.Q., Boonyatee, T., Keawsawasvong, S.: Behavior of a deep excavation and damages on adjacent buildings: a case study in Vietnam. Transp. Infrastruct. Geotechnol. 8(3), 361–389 (2021)

    Article  Google Scholar 

  9. Lai, V.Q., Le, M.N., Huynh, Q.T., Do, T.H.: 2020: Performance analysis of a combination between D-wall and Secant pile wall in upgrading the depth of basement by Plaxis 2D: a case study in Ho Chi Minh city. In: ICSCEA 2019, pp. 745–755. Springer, Singapore (2019)

    Google Scholar 

  10. Huynh, Q.T., Lai, V.Q., Tran, V.T. and Nguyen, M.T.: Back analysis on deep excavation in the thick sand layer by hardening soil small model. In: ICSCEA 2019, pp. 659–668. Springer, Singapore (2019)

    Google Scholar 

  11. Keawsawasvong, S., Ukritchon, B.: Stability of unsupported conical excavations in non-homogeneous clays. Comput. Geotech. 81, 125–136 (2017)

    Article  Google Scholar 

  12. Ukritchon, B., Keawsawasvong, S.: A new design equation for drained stability of conical slopes in cohesive-frictional soils. J. Rock Mech. Geotech. Eng. 10(2), 358–366 (2018)

    Article  Google Scholar 

  13. Yodsomjai, W., Keawsawasvong, S., Likitlersuang, S.: Stability of unsupported conical slopes in Hoek-Brown rock masses. Transp. Infrastruct. Geotech. (2020)

    Google Scholar 

  14. Yodsomjai, W., Keawsawasvong, S., Thongchom, C., Lawongkerd, J.: Undrained stability of unsupported conical slopes in two-layered clays. Innov. Infrastruct. Solut. 6(1), 1–17 (2020). https://doi.org/10.1007/s41062-020-00384-x

    Article  Google Scholar 

  15. Keawsawasvong, S., Lai, V.Q.: End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor. Int. J. Geosynth. Ground Eng. 7(1), 1 (2021)

    Article  Google Scholar 

  16. Ukritchon, B., Keawsawasvong, S.: Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotech. Geol. Eng. 38(1), 897–915 (2020)

    Article  Google Scholar 

  17. Ukritchon, B., Yoang, S., Keawsawasvong, S.: Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Comput. Geotech. 117, 103281 (2020)

    Article  Google Scholar 

  18. Casagrande, A., Carillo, N.: Shear failure of anisotropic soils. Contrib. Soil Mech. (BSCE) 1941–1953(4), 122–135 (1994)

    Google Scholar 

  19. Lo, K.Y.: Stability of slopes in anisotropic soils. J. Soil Mech. Found. Division 31, 85–106 (1965)

    Article  Google Scholar 

  20. Davis, E.H., Christian, J.T.: Bearing capacity of anisotropic cohesive soil. J. Soil Mech. Found. Division 97(5), 753–769 (1971)

    Article  Google Scholar 

  21. Krabbenhoft, K., Lyamin, A.V.: Generalised Tresca criterion for undrained total stress analysis. Geotech. Lett. 5, 313–317 (2015)

    Article  Google Scholar 

  22. Krabbenhøft, K., Galindo-Torres, S.A., Zhang, X., Krabbenhøft, J.: AUS: Anisotropic undrained shear strength model for clays. Int. J. Numer. Anal. Meth. Geomech. 43(17), 2652–2666 (2019)

    Article  Google Scholar 

  23. Nguyen, D.K., Nguyen, T.P., Keawsawasvong, S., Lai, V.Q.: Vertical uplift capacity of circular anchors in clay by considering anisotropy and non-homogeneity. Transp. Infrastruct. Geotechnol. (2021)

    Google Scholar 

  24. Lai, V.Q., Nguyen, D.K., Banyong, R., Keawsawasvong, S.: Limit analysis solutions for stability number of unsupported conical slopes in clays with heterogeneity and anisotropy. Int. J. Comput. Mater. Sci. Eng. 2150030 (2021)

    Google Scholar 

  25. Sirimontree, S., et al.: Prediction of penetration resistance of a spherical penetrometer in clay using multivariate adaptive regression splines model. Sustainability 14(6), 3222 (2022)

    Article  Google Scholar 

  26. Keawsawasvong, S., Shiau, J., Ngamkhanong, C., Lai, V.Q., Thongchom, C.: Undrained stability of ring foundations: axisymmetry, anisotropy, and nonhomogeneity. Int. J. Geomech. 22(1), 04021253 (2022)

    Article  Google Scholar 

  27. Lai, V.Q., Banyong, R., Keawsawasvong, S.: Stability of limiting pressure behind soil gaps in contiguous pile walls in anisotropic clays. Eng. Failure Anal. 106049 (2022)

    Google Scholar 

  28. Keawsawasvong, S., Seehavong, S., Ngamkhanong, C.: Application of artificial neural networks for predicting the stability of rectangular tunnels in hoek-brown rock masses. Front. Built Environ 8, 837745 (2022)

    Article  Google Scholar 

  29. Lai V.Q., Shiau, J., Keawsawasvong, S., Tran, D.T.: Bearing capacity of ring foundations on anisotropic and heterogenous clays ~ FEA, NGI-ADP, and MARS. Geotech. Geol. Eng. (2022). https://doi.org/10.1007/s10706-022-02117-6

  30. Butterfield, R.: Dimensional analysis for geotechnical engineering. Géotechnique 49(2), 357–366 (1999)

    Google Scholar 

  31. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat 19, 1–67 (1991)

    MathSciNet  MATH  Google Scholar 

  32. Yang, C.-C., Prasher, S.O., Lacroix, R., Kim, S.H.: Application of multivariate adaptive regression splines (MARS) to simulate soil temperature. Trans. ASAE 47(3), 881 (2004)

    Google Scholar 

  33. Deo, R.C., Kisi, O., Singh, V.P.: Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos. Res. 184, 149–175 (2017)

    Google Scholar 

  34. Lai, F., Zhang, N., Liu, S., Sun, Y., Li, Y.: Ground movements induced by installation of twin large diameter deeply-buried caissons: 3D numerical modeling. Acta Geotech. 16(9), 2933–2961 (2021). https://doi.org/10.1007/s11440-021-01165-1

    Article  Google Scholar 

  35. Zhang, W., Zhang, R., Wang, W., Zhang, F., Goh, A.T.C.: A multivariate adaptive regression splines model for determining horizontal wall deflection envelope for braced excavations in clays. Tunn. Undergr. Space Technol 84, 461–471 (2019)

    Article  Google Scholar 

  36. Wu, L., Fan, J.: Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLoS ONE 14, e0217520 (2019)

    Google Scholar 

  37. Raja, M.N.A., Shukla, S.K.: Multivariate adaptive regression splines model for reinforced soil foundations. Geosynth. Int 28, 368–390 (2021)

    Article  Google Scholar 

  38. Caraka, R.E., Chen, R.C., Bakar, S.A., Tahmid, M., Toharudin, T., Pardamean, B.: Employing best input SVR robust lost function with nature-inspired metaheuristics in wind speed energy forecasting. IAENG Int. J. Comput. Sci. 2020(47), 572–584 (2020)

    Google Scholar 

  39. Jearsiripongkul, T., Lai, V.Q., Keawsawasvong, S., Nguyen, T.S., Nguyen Van, C., Thongchom, C., Nuaklong, P.: Prediction of uplift capacity of cylindrical caissons in anisotropic and inhomogeneous clays using multivariate adaptive regression splines. Sustainability 14, 4456 (2022). https://doi.org/10.3390/su14084456

  40. Lai, V.Q., Banyong, R., Keawsawasvong, S.: Undrained sinkhole collapse in anisotropic clays. Arab. J. Geosci. 15(8), 1–13 (2022). https://doi.org/10.1007/s12517-022-10061-1

    Article  Google Scholar 

  41. Yodsomjai, W., Lai, V.Q., Banyong, R., Chauhan, V.B., Thongchom, C., Keawsawasvong, S.: A machine learning regression approach for predicting basal heave stability of braced excavation in non-homogeneous clay. Arab. J. Geosci. 15(9), 1–14 (2022)

    Article  Google Scholar 

  42. Shiau, J., Lai, V.Q., Keawsawasvong, S.: Multivariate adaptive regression splines analysis for 3D slope stability in anisotropic and heterogenous clay. J. Rock Mech. Geotech. Eng. Accepted

    Google Scholar 

Download references

Acknowledgement

We would like to thank Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for the support of time and facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Qui Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, V.Q., Thongchom, C., Keawsawasvong, S., Van, C.N. (2023). Multivariate Adaptive Regression Splines for Stability Number of Unsupported Conical Slopes in Anisotropic and Heterogeneous Clays. In: Huang, YP., Wang, WJ., Quoc, H.A., Le, HG., Quach, HN. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2022. Lecture Notes in Networks and Systems, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-031-19694-2_15

Download citation

Publish with us

Policies and ethics

Navigation