Log in

Machine learning regression approach for analysis of bearing capacity of conical foundations in heterogenous and anisotropic clays

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An upper bound (UB) and lower bound (LB) finite element limit analysis cooperating with a machine learning method is adopted as a new solution for predicting the bearing capacity of conical foundations embedded in anisotropic and heterogenous clays. The anisotropic and heterogenous clays are simulated by anisotropic undrained strength (AUS) model for capturing the anisotropic strengths of clays. The bearing capacity of the conical foundation is investigated using the dimensionless parameter approach. The bearing capacity factors, as well as the failure mechanisms of conical foundations, are examined through 1296 numerical cases with changing of four input dimensionless parameters, namely cone apex angle, embedded depth ratio, the anisotropic ratio, and the strength gradient ratio. Based on numerical results, a machine learning technique of multivariate adaptive regression splines (MARS) model is used for accessing the sensitivity of each investigated dimensionless parameter and functioning the relationship between input parameters and output bearing capacity factors. The results of the analysis are prepared in charts, design tables, and empirical equations from MARS. The paper can be the theory guidelines for initial design and provide an effective tool for practitioners in determining the bearing capacity of conical foundation embedded in anisotropic and heterogenous clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability statement

All data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

a 0 :

The constant in empirical proposed from MARS

a n :

The coefficient added on basic function

ANFIS:

Adaptive neuro fuzzy inference system, a machine learning technique

ANN:

Artificial neural network, a machine learning technique

AUS:

Anisotropic undrained strength, name of soil model

AVG:

Average

BF:

The basic function

BFs:

The basic functions

CART:

Classification and regression trees, a machine leaning technique

CHFRF:

Cone-shaped hollow flexible reinforced concrete foundation

D :

Diameter

DT:

Decision tree, a machine leaning technique

ELM:

Extreme learning machines, a machine leaning technique

F :

Bearing capacity factor

f(x):

Function

FEA:

Finite element analysis

FELA:

Finite element limit analysis

FEM:

Finite element methods

GCV:

Generalized cross-validation

g n :

The nth of the basic functions

GPR:

Gausian process regression, a machine leaning technique

GRNN:

General regression neural network, a machine leaning technique

h :

Is the penalty factor

H :

Embedded depth

H/D :

The embedded depth ratio

KNEA:

Kernel-based nonlinear extension of Arps decline, a machine leaning technique

LB:

Lower bound

LR:

Linear Regression

M5Tree:

Name of a machine leaning technique

MARS:

Multivariate adaptive regression splines model, a machine leaning technique

max:

Maximum

MLP:

Multi-layer perceptron, a machine leaning technique

MoC:

Method of characteristics

MSE:

Mean squared error

n :

Value

N :

Number of the fitted basic functions

PI:

Plasticity index of clay

q :

Uniform pressure

R :

Radius

ρ :

The gradient of linearly increasing strength

R :

The number of data points

R 2 :

The coefficient of determination

r e = s uDSS/s uTC :

An anisotropic strength ratio between suDSS/suTC

RF:

Radio frequency, a machine leaning technique

RII:

Relative importance index

r s = s uDSS/s uTC :

An anisotropic strength ratio between suDSS/suTC

RMSE:

The root mean square error

SGBT:

Stochastic gradient boosting tress, a machine learning technique

s uDSS :

Shear strengths obtained from direct simple shear

s uDSS0 :

Direct simple shear strength at the ground surface

s uTC :

Shear strengths obtained from triaxial compression

s uTC0 :

Triaxial compression shear strength at the ground surface

s uTE :

Shear strengths obtained from triaxial extension

s uTE0 :

Triaxial extension shear strength at the ground surface

SVM:

Support vector machine, a machine leaning technique

SVR:

Support vector regression

t :

Threshold value in MARS model

UB:

Upper bound

x :

A input variable

X :

Variable

XGBoost:

Extreme gradient boosting, a machine leaning technique

z :

The depth starting from the ground surface

β :

The cone apex angle of the conical foundation

ρD/s uTC0 :

The increasing strength gradient ratio

Σ :

Sum

References

  1. Byrne B, Houlsby G (2003) Foundations for offshore wind turbines. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361(1813):2909–2930

    Article  Google Scholar 

  2. Hu P, **ao Z, Leo C, Liyanapathirana S (2021) Advances in the prediction of spudcan punch-through in double-layered soils. Mar Struct 79:103038

    Article  Google Scholar 

  3. Fan Y, Wang J, Feng S (2021) Effect of spudcan penetration on laterally loaded pile groups. Ocean Eng 221:108505

    Article  Google Scholar 

  4. Mehralizadeh H, Makarchian M (2021) A new method to predict the bearing capacity–penetration curve of spudcans in multi-layered clay soils. Mar Georesour Geotechnol 40:511–522

    Article  Google Scholar 

  5. Li D, Li S, Zhang Y (2019) Cone-shaped hollow flexible reinforced concrete foundation (CHFRF)–Innovative for mountain wind turbines. Soils Found 59(5):1172–1181

    Article  Google Scholar 

  6. Li S, Zhang Y, Li D, Gao M (2022) Lateral bearing capacity of cone-shaped hollow foundation by using limit equilibrium method. Int J Phys Model Geotech 22(3):157–168

    Article  Google Scholar 

  7. Cassidy M, Houlsby G (2002) Vertical bearing capacity factors for conical foundations on sand. Géotechnique 52(9):687–692

    Article  Google Scholar 

  8. Houlsby G, Martin C (2003) Undrained bearing capacity factors for conical foundations on clay. Géotechnique 53(5):513–520

    Article  Google Scholar 

  9. Khatri VN, Kumar J (2009) Bearing capacity factor N for a rough conical foundation. Geomech Eng 1(3):205–218

    Article  Google Scholar 

  10. Chakraborty M, Kumar J (2016) The size effect of a conical foundation on Nγ. Comput Geotech 76:212–221

    Article  Google Scholar 

  11. Chakraborty M, Kumar J (2015) Bearing capacity factors for a conical foundation using lower-and upper-bound finite elements limit analysis. Can Geotech J 52(12):2134–2140

    Article  Google Scholar 

  12. Keawsawasvong S (2021) Bearing capacity of conical foundations on clays considering combined effects of anisotropy and non-homogeneity. Ships Offshore Struct. https://doi.org/10.1080/17445302.2021.1987110

    Article  Google Scholar 

  13. Phuor T, Harahap IS, Ng C-Y (2022) Bearing capacity factors for rough conical foundation by viscoplasticity finite-element analysis. Int J Geomech 22(1):04021266

    Article  Google Scholar 

  14. Casagrande ACN (1944) Shear failure of anisotropic soils. Contributions to Soil Mechanics (BSCE)

  15. Lo KY (1965) Stability of slopes in anisotropic soils. J Soil Mech Found Div 91(4):85–106

    Article  Google Scholar 

  16. Ladd C (1991) Stability analysis during staged construction: J Geotech Engng Div ASCE V117, N4, April 1991, P538–615. In: International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon

  17. Ladd CC, DeGroot DJ (2004) Recommended practice for soft ground site characterization: Arthur Casagrande Lecture. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  18. Grimstad G, Andresen L, Jostad HP (2012) NGI-ADP: anisotropic shear strength model for clay. Int J Numer Anal Meth Geomech 36(4):483–497

    Article  Google Scholar 

  19. Krabbenhøft K, Galindo-Torres SA, Zhang X, Krabbenhøft J (2019) AUS: anisotropic undrained shear strength model for clays. Int J Numer Anal Meth Geomech 43(17):2652–2666

    Article  Google Scholar 

  20. Krabbenhoft K, Lyamin A (2015) Generalised Tresca criterion for undrained total stress analysis. Géotech Lett 5(4):313–317

    Article  Google Scholar 

  21. Ukritchon B, Yoang S, Keawsawasvong S (2018) Bearing capacity of shallow foundations in clay with linear increase in strength and adhesion factor. Mar Georesour Geotechnol 36(4):438–451

    Article  Google Scholar 

  22. Keawsawasvong S (2021) End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor. Int J Geosynth Ground Eng 7(1):1–10

    Article  Google Scholar 

  23. Lai VQ, Nguyen DK, Banyong R, Keawsawasvong S (2021) Limit analysis solutions for stability factor of unsupported conical slopes in clays with heterogeneity and anisotropy. Int J Comput Mater Sci Eng. https://doi.org/10.1142/S2047684121500305

    Article  Google Scholar 

  24. Huang M, Wang H, Tang Z, Yu J (2021) Basal stability analysis of braced excavations in anisotropic and non-homogeneous undrained clay using streamline velocity fields. Acta Geotech 16(4):1175–1186

    Article  Google Scholar 

  25. Pan Q, Dias D (2016) Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach. Int J Geomech 16(3):04015076

    Article  Google Scholar 

  26. Keawsawasvong S, Ukritchon B (2021) Design equation for stability of a circular tunnel in anisotropic and heterogeneous clay. Undergr Space 7:76–93

    Article  Google Scholar 

  27. Rao P, Wu J, Mo Z (2020) 3D Limit analysis of the transient stability of slope during pile driving in nonhomogeneous and anisotropic soil. Adv Civ Eng 2020:1–10

    Google Scholar 

  28. Haghsheno H, Arabani M (2021) Seismic bearing capacity of shallow foundations placed on an anisotropic and nonhomogeneous inclined ground. Indian Geotech J 51:1319–1337

    Article  Google Scholar 

  29. Keawsawasvong S, Ukritchon B (2021) Undrained stability of plane strain active trapdoors in anisotropic and non-homogenous clays. Tunn Undergr Space Technol 107:103628

    Article  Google Scholar 

  30. Keawsawasvong S, Shiau J (2021) Stability of active trapdoors in axisymmetry. Undergr Space 7:50–57

    Article  Google Scholar 

  31. Ukritchon B, Keawsawasvong S (2020) Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous and anisotropic clays. Int J Numer Anal Meth Geomech 44(5):596–632

    Article  Google Scholar 

  32. Nguyen DK, Nguyen TP, Keawsawasvong S, Lai VQ (2021) Vertical uplift capacity of circular anchors in clay by considering anisotropy and non-homogeneity. Transp Infrastruct Geotechnol. https://doi.org/10.1007/s40515-021-00191-6

    Article  Google Scholar 

  33. Keawsawasvong S, Shiau J, Ngamkhanong C, Qui Lai V, Thongchom C (2021) Undrained stability of ring foundations: axisymmetry, anisotropy, and nonhomogeneity. Int J Geomech 22(1):04021253

    Article  Google Scholar 

  34. Shiau J, Lai VQ, Keawsawasvong S (2022) Multivariate adaptive regression splines analysis for 3D slope stability in anisotropic and heterogenous clay. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2022.05.016

    Article  Google Scholar 

  35. Lai VQ, Banyong R, Keawsawasvong S (2022) Stability of limiting pressure behind soil gaps in contiguous pile walls in anisotropic clays. Eng Fail Anal 134:106049

    Article  Google Scholar 

  36. Lee JK, Jeong S, Lee S (2016) Undrained bearing capacity factors for ring footings in heterogeneous soil. Comput Geotech 75:103–111

    Article  Google Scholar 

  37. Keawsawasvong S, Lai VQ (2021) End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor. Int J Geosynth Ground Eng 7(1):1–10

    Article  Google Scholar 

  38. Bishop AW (1966) The strength of soils as engineering materials. Geotechnique 16(2):91–130

    Article  Google Scholar 

  39. Likitlersuang S, Plengsiri P, Mase LZ, Tanapalungkorn W (2020) Influence of spatial variability of ground on seismic response analysis: a case study of Bangkok subsoils. Bull Eng Geol Env 79(1):39–51

    Article  Google Scholar 

  40. Misliniyati R, Mase LZ, Irsyam M, Hendriawan H, Sahadewa A (2019) Seismic response validation of simulated soil models to vertical array record during a strong earthquake. J Eng Technol Sci 51(6):772–790

    Article  Google Scholar 

  41. Butterfield R (1999) Dimensional analysis for geotechnical engineers. Geotechnique 49(3):357–366

    Article  Google Scholar 

  42. Lai VQ, Shiau J, Keawsawasvong S, Tran DT (2022) Bearing capacity of ring foundations on anisotropic and heterogenous clays: FEA, NGI-ADP, and MARS. Geotech Geol Eng 40:3929–3941

    Article  Google Scholar 

  43. Brinkgreve R, Vermeer P (2019) PLAXIS 2D reference manual CONNECT edition V20. Delft University, Delft, The Netherlands

    Google Scholar 

  44. OptumCE (2020) OptumG2. Copenhagen, Denmark: Optum Computational Engineering. See https://optumce.com/. Accessed 1 Dec 2020

  45. Griffiths D, Lane P (1999) Slope stability analysis by finite elements. Geotechnique 49(3):387–403

    Article  Google Scholar 

  46. Griffiths D, Marquez R (2007) Three-dimensional slope stability analysis by elasto-plastic finite elements. Geotechnique 57(6):537–546

    Article  Google Scholar 

  47. Moayedi H, Mosallanezhad M, Rashid ASA, Jusoh WAW, Muazu MA (2020) A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Comput Appl 32(2):495–518

    Article  Google Scholar 

  48. Moayedi H, Rezaei A (2021) The feasibility of PSO–ANFIS in estimating bearing capacity of strip foundations rested on cohesionless slope. Neural Comput Appl 33(9):4165–4177

    Article  Google Scholar 

  49. Singh G, Walia B (2017) Performance evaluation of nature-inspired algorithms for the design of bored pile foundation by artificial neural networks. Neural Comput Appl 28(1):289–298

    Article  Google Scholar 

  50. Abd Elmaboud Y, Abdelsalam SI (2019) DC/AC magnetohydrodynamic-micropump of a generalized Burger’s fluid in an annulus. Phys Scr 94(11):115209

    Article  Google Scholar 

  51. Raza R, Mabood F, Naz R, Abdelsalam SI (2021) Thermal transport of radiative Williamson fluid over stretchable curved surface. Therm Sci Eng Progress 23:100887

    Article  Google Scholar 

  52. Elkoumy S, Barakat E, Abdelsalam S (2013) Hall and transverse magnetic field effects on peristaltic flow of a Maxwell fluid through a porous medium. Glob J Pure Appl Math 9(2):187–203

    Google Scholar 

  53. Abdelsalam SI, Zaher AZ (2021) Leveraging elasticity to uncover the role of rabinowitsch suspension through a wavelike conduit: consolidated blood suspension application. Mathematics 9(16):2008

    Article  Google Scholar 

  54. Eldesoky I, Abdelsalam SI, El-Askary WA, Ahmed M (2020) The integrated thermal effect in conjunction with slip conditions on peristaltically induced particle-fluid transport in a catheterized pipe. J Porous Media 23(7):695–713

    Article  Google Scholar 

  55. Abdelsalam SI, Velasco-Hernández JX, Zaher A (2021) Electro-magnetically modulated self-propulsion of swimming sperms via cervical canal. Biomech Model Mechanobiol 20(3):861–878

    Article  Google Scholar 

  56. Bhatti M, Abdelsalam SI (2021) Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects. Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.1998728

    Article  Google Scholar 

  57. Mekheimer KS, Abo-Elkhair R, Abdelsalam S, Ali KK, Moawad A (2022) Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: synovitis problem. Int Commun Heat Mass Transf 130:105756

    Article  Google Scholar 

  58. Abd Elmaboud Y, Mekheimer KS, Abdelsalam SI (2014) A study of nonlinear variable viscosity in finite-length tube with peristalsis. Appl Bionics Biomech 11(4):197–206

    Article  Google Scholar 

  59. Abumandour RM, Eldesoky IM, Kamel MH, Ahmed MM, Abdelsalam SI (2020) Peristaltic thrusting of a thermal-viscosity nanofluid through a resilient vertical pipe. Z Naturforschung A 75(8):727–738

    Article  Google Scholar 

  60. Bhatti M, Alamri SZ, Ellahi R, Abdelsalam SI (2021) Intra-uterine particle–fluid motion through a compliant asymmetric tapered channel with heat transfer. J Therm Anal Calorim 144(6):2259–2267

    Article  Google Scholar 

  61. Bhatti MM, Marin M, Zeeshan A, Abdelsalam SI (2020) Recent trends in computational fluid dynamics. Front Phys 8:593111

    Article  Google Scholar 

  62. Sloan S (2013) Geotechnical stability analysis. Géotechnique 63(7):531–571

    Article  Google Scholar 

  63. Ukritchon B, Keawsawasvong S (2019) Design equations of uplift capacity of circular piles in sands. Appl Ocean Res 90:101844

    Article  Google Scholar 

  64. Keawsawasvong S, Shiau J (2021) Instability of boreholes with slurry. Int J Geosynth Ground Eng 7(4):1–11

    Article  Google Scholar 

  65. Ukritchon B, Yoang S, Keawsawasvong S (2020) Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Comput Geotech 117:103281

    Article  Google Scholar 

  66. Ukritchon B, Yoang S, Keawsawasvong S (2019) Three-dimensional stability analysis of the collapse pressure on flexible pavements over rectangular trapdoors. Transp Geotech 21:100277

    Article  Google Scholar 

  67. Yodsomjai W, Keawsawasvong S, Senjuntichai T (2021) Undrained stability of unsupported conical slopes in anisotropic clays based on Anisotropic Undrained Shear failure criterion. Transp Infrastruct Geotechnol 8(4):557–568

    Article  Google Scholar 

  68. Keawsawasvong S, Ukritchon B (2020) Design equation for stability of shallow unlined circular tunnels in Hoek–Brown rock masses. Bull Eng Geol Env 79:4167–4190

    Article  Google Scholar 

  69. Keawsawasvong S, Ukritchon B (2022) Design equation for stability of a circular tunnel in an anisotropic and heterogeneous clay. Undergr Space 7(1):76–93

    Article  Google Scholar 

  70. Keawsawasvong S, Ukritchon B (2019) Undrained basal stability of braced circular excavations in non-homogeneous clays with linear increase of strength with depth. Comput Geotech 115:103180

    Article  Google Scholar 

  71. Keawsawasvong S, Thongchom C, Likitlersuang S (2021) Bearing capacity of strip footing on Hoek–Brown rock mass subjected to eccentric and inclined loading. Transp Infrastruct Geotechnol 8:189–200

    Article  Google Scholar 

  72. Keawsawasvong S, Ukritchon B (2019) Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis. J Rock Mech Geotech Eng 11(6):1274–1285

    Article  Google Scholar 

  73. Loukidis D, Bandini P, Salgado R (2003) Stability of seismically loaded slopes using limit analysis. Geotechnique 53(5):463–479

    Article  Google Scholar 

  74. Kumar J, Samui P (2006) Stability determination for layered soil slopes using the upper bound limit analysis. Geotech Geol Eng 24(6):1803–1819

    Article  Google Scholar 

  75. Li A, Merifield R, Lin H, Lyamin A (2014) Trench stability under bentonite pressure in purely cohesive clay. Int J Geomech 14(1):151–157

    Article  Google Scholar 

  76. Shiau J, Hassan MM (2021) Numerical investigation of undrained trapdoors in three dimensions. Int J Geosynth Ground Eng 7(2):1–12

    Article  Google Scholar 

  77. Shiau J, Al-Asadi F (2020) Three-dimensional heading stability of twin circular tunnels. Geotech Geol Eng 38(3):2973–2988

    Article  Google Scholar 

  78. Shiau J, Al-Asadi F (2021) Twin tunnels stability factors Fc, Fs and Fγ. Geotech Geol Eng 39(1):335–345

    Article  Google Scholar 

  79. Yodsomjai W, Keawsawasvong S, Lai VQ (2021) Limit analysis solutions for bearing capacity of ring foundations on rocks using Hoek–Brown failure criterion. Int J Geosynth Ground Eng 7(2):1–10

    Google Scholar 

  80. Ciria H, Peraire J, Bonet J (2008) Mesh adaptive computation of upper and lower bounds in limit analysis. Int J Numer Methods Eng 75(8):899–944

    Article  MATH  Google Scholar 

  81. Yodsomjai W, Keawsawasvong S (2021) Limit analysis solutions for bearing capacity of ring foundations on rocks using hoek-brown failure criterion. Int J Geosynth Ground Eng 7(2):1–10

    Google Scholar 

  82. Goudjil K, Arabet L (2021) Assessment of deflection of pile implanted on slope by artificial neural network. Neural Comput Appl 33:1091–1101

    Article  Google Scholar 

  83. Acharyya R, Dey A (2019) Assessment of bearing capacity for strip footing located near slo** surface considering ANN model. Neural Comput Appl 31(11):8087–8100

    Article  Google Scholar 

  84. Suthar M (2019) Applying several machine learning approaches for prediction of unconfined compressive strength of stabilized pond ashes. Neural Comput Appl 32:9019–9028

    Article  Google Scholar 

  85. Cao M, Pan L, Gao Y, Novák D, Ding Z et al (2017) Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput Appl 28(7):1583–1590

    Article  Google Scholar 

  86. Abu Arqub O (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610

    Article  Google Scholar 

  87. Abu Arqub O, Rashaideh H (2018) The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs. Neural Comput Appl 30(8):2595–2606

    Article  Google Scholar 

  88. Momani S, Abo-Hammour ZS, Alsmadi OM (2016) Solution of inverse kinematics problem using genetic algorithms. Appl Math Inf Sci 10(1):225

    Article  Google Scholar 

  89. Fei J, Wu Z, Sun X, Su D, Bao X (2021) Research on tunnel engineering monitoring technology based on BPNN neural network and MARS machine learning regression algorithm. Neural Comput Appl 33:239–255

    Article  Google Scholar 

  90. Barzegar R, Sattarpour M, Deo R, Fijani E, Adamowski J (2019) An ensemble tree-based machine learning model for predicting the uniaxial compressive strength of travertine rocks. Neural Comput Appl 32:9065–9080

    Article  Google Scholar 

  91. Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31(2):327–336

    Article  Google Scholar 

  92. Zhang W (2019) MARS applications in geotechnical engineering systems: multi-dimension with big data. Springer, Singapore

    Google Scholar 

  93. Lai F, Zhang N, Liu S, Sun Y, Li Y (2021) Ground movements induced by installation of twin large diameter deeply-buried caissons: 3D numerical modeling. Acta Geotech 16:2933–2961

    Article  Google Scholar 

  94. Zheng G, Yang P, Zhou H, Zeng C, Yang X et al (2019) Evaluation of the earthquake induced uplift displacement of tunnels using multivariate adaptive regression splines. Comput Geotech 113:103099

    Article  Google Scholar 

  95. Raja MNA, Shukla SK (2021) Multivariate adaptive regression splines model for reinforced soil foundations. Geosynth Int 28(4):368–390

    Article  Google Scholar 

  96. Wu L, Fan J (2019) Comparison of neuron-based, kernel-based, tree-based and curve-based machine learning models for predicting daily reference evapotranspiration. PLoS ONE 14(5):e0217520

    Article  Google Scholar 

  97. Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S et al (2020) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11(4):1095–1106

    Article  Google Scholar 

  98. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    MATH  Google Scholar 

  99. Steinberg D, Colla P, Martin K (1999) MARS user guide. Salford Systems, San Diego

    Google Scholar 

  100. Gan Y, Duan Q, Gong W, Tong C, Sun Y et al (2014) A comprehensive evaluation of various sensitivity analysis methods: a case study with a hydrological model. Environ Model Softw 51:269–285

    Article  Google Scholar 

Download references

Acknowledgements

This work belongs to the project T2022-159 funded by Ho Chi Minh City University of Technology and Education, Vietnam.

Author information

Authors and Affiliations

Authors

Contributions

CNV contributed to data curation, software, investigation, methodology, writing–original draft, and project administration. SK contributed to methodology, software, and writing–original draft. DKN contributed to data curation and software. VQL contributed to data curation, software, investigation, methodology, writing–review and editing, and project administration.

Corresponding author

Correspondence to Van Qui Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix 1: Bearing capacity of conical foundation, H/D = 0

H/D = 0

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

6.623

5.197

4.863

4.835

4.772

4.746

0

0.6

10.929

6.864

5.895

5.579

5.469

5.389

0

0.7

17.269

9.334

7.413

6.652

6.325

6.056

0

0.8

27.834

13.426

9.848

8.348

7.569

6.977

0

0.9

48.934

21.507

14.603

11.542

9.820

8.490

0

1

70.076

29.570

19.333

14.619

11.923

9.741

1

0.5

7.164

5.581

5.222

5.141

5.107

5.095

1

0.6

11.760

7.360

6.333

5.972

5.832

5.770

1

0.7

18.579

9.976

7.914

7.103

6.682

6.486

1

0.8

29.936

14.322

10.477

8.889

8.081

7.499

1

0.9

52.636

22.898

15.546

12.311

10.494

9.130

1

1

75.334

31.486

20.564

15.633

12.769

10.523

2.5

0.5

7.594

5.848

5.443

5.374

5.344

5.336

2.5

0.6

12.419

7.720

6.585

6.233

6.105

6.043

2.5

0.7

19.633

10.469

8.241

7.402

7.033

6.831

2.5

0.8

31.632

15.004

10.933

9.276

8.434

7.908

2.5

0.9

55.610

24.023

16.223

12.863

10.991

9.658

2.5

1

79.583

33.027

21.460

16.371

13.400

11.181

5

0.5

7.954

6.087

5.625

5.532

5.521

5.515

5

0.6

13.060

8.017

6.840

6.444

6.312

6.267

5

0.7

20.655

10.877

8.571

7.688

7.276

7.108

5

0.8

33.288

15.591

11.373

9.645

8.782

8.250

5

0.9

58.526

24.967

16.876

13.392

11.467

10.120

5

1

83.751

34.318

22.322

17.046

13.997

11.738

10

0.5

8.282

6.279

5.779

5.674

5.671

5.666

10

0.6

13.618

8.316

7.046

6.624

6.484

6.449

10

0.7

21.548

11.288

8.840

7.922

7.506

7.340

10

0.8

34.727

16.182

11.737

9.952

9.063

8.553

10

0.9

61.055

25.909

17.417

13.829

11.873

10.534

10

1

87.384

35.607

23.041

17.614

14.507

12.241

15

0.5

8.570

6.468

5.939

5.812

5.799

5.794

15

0.6

14.109

8.577

7.254

6.814

6.667

6.633

15

0.7

22.331

11.647

9.108

8.160

7.739

7.573

15

0.8

35.995

16.698

12.096

10.261

9.212

8.840

15

0.9

63.291

26.733

17.953

14.266

12.272

10.914

15

1

90.579

36.740

23.749

18.172

14.999

12.702

1.2 Appendix 2: Bearing capacity of conical foundation, H/D = 0.1

H/D = 0.1

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

6.796

5.541

5.286

5.309

5.299

5.276

0

0.6

10.699

7.075

6.273

6.085

5.991

5.959

0

0.7

15.352

8.876

7.387

6.895

6.668

6.536

0

0.8

21.025

11.057

8.700

7.826

7.490

7.124

0

0.9

28.072

13.759

10.310

8.944

8.211

7.774

0

1

32.292

15.356

11.260

9.580

8.814

8.094

1

0.5

7.366

5.929

5.655

5.655

5.645

5.638

1

0.6

11.553

7.569

6.710

6.472

6.412

6.393

1

0.7

16.554

9.496

7.893

7.347

7.136

7.039

1

0.8

22.620

11.837

9.295

8.341

7.940

7.682

1

0.9

30.201

14.706

10.996

9.532

8.707

8.360

1

1

34.729

16.387

11.993

10.228

9.352

8.716

2.5

0.5

7.802

6.219

5.892

5.896

5.881

5.874

2.5

0.6

12.231

7.954

6.994

6.761

6.693

6.678

2.5

0.7

17.494

9.970

8.235

7.674

7.444

7.372

2.5

0.8

23.901

12.399

9.694

8.695

8.249

8.044

2.5

0.9

31.896

15.405

11.475

9.935

9.202

8.762

2.5

1

36.683

17.196

12.523

10.654

9.728

9.149

5

0.5

8.202

6.451

6.114

6.080

6.080

6.075

5

0.6

12.871

8.264

7.275

6.990

6.936

6.923

5

0.7

18.413

10.365

8.568

7.948

7.731

7.659

5

0.8

25.155

12.889

10.088

9.040

8.581

8.379

5

0.9

33.565

16.011

11.939

10.335

9.578

9.143

5

1

38.602

17.873

13.032

11.086

10.130

9.554

10

0.5

8.548

6.688

6.286

6.235

6.236

6.232

10

0.6

13.428

8.580

7.498

7.192

7.129

7.119

10

0.7

19.209

10.762

8.839

8.190

7.964

7.892

10

0.8

26.244

13.382

10.411

9.324

8.855

8.653

10

0.9

35.018

16.622

12.324

10.664

9.760

9.462

10

1

40.274

18.555

13.452

11.444

10.477

9.896

15

0.5

8.852

6.895

6.466

6.400

6.402

6.396

15

0.6

13.918

8.855

7.725

7.402

7.331

7.320

15

0.7

19.912

11.111

9.113

8.441

8.208

8.134

15

0.8

27.204

13.816

10.737

9.616

9.138

8.936

15

0.9

36.296

17.159

12.708

11.001

10.181

9.785

15

1

41.744

19.153

13.871

11.803

10.822

10.241

1.3 Appendix 3: Bearing capacity of conical foundation, H/D = 0.25

H/D = 0.25

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

7.075

5.903

5.752

5.795

5.778

5.734

0

0.6

10.484

7.240

6.580

6.465

6.454

6.437

0

0.7

13.625

8.451

7.333

7.014

6.933

6.873

0

0.8

16.504

9.569

8.005

7.482

7.280

7.185

0

0.9

19.181

10.576

8.592

7.896

7.579

7.365

0

1

20.433

11.050

8.868

8.087

7.784

7.460

1

0.5

7.627

6.319

6.119

6.156

6.148

6.144

1

0.6

11.290

7.773

7.052

6.908

6.877

6.856

1

0.7

14.683

9.060

7.848

7.495

7.382

7.334

1

0.8

17.781

10.255

8.544

7.991

7.752

7.679

1

0.9

20.650

11.325

9.178

8.427

8.170

7.950

1

1

22.002

11.822

9.463

8.620

8.244

8.057

2.5

0.5

8.093

6.647

6.404

6.423

6.427

6.414

2.5

0.6

11.992

8.180

7.382

7.220

7.200

7.184

2.5

0.7

15.544

9.531

8.208

7.825

7.725

7.690

2.5

0.8

18.812

10.754

8.929

8.337

8.129

8.055

2.5

0.9

21.831

11.865

9.580

8.785

8.438

8.334

2.5

1

23.263

12.386

9.876

8.986

8.590

8.448

5

0.5

8.516

6.907

6.651

6.650

6.655

6.638

5

0.6

12.630

8.508

7.685

7.488

7.470

7.453

5

0.7

16.371

9.913

8.546

8.131

8.018

7.987

5

0.8

19.806

11.181

9.299

8.668

8.446

8.372

5

0.9

22.985

12.335

9.973

9.132

8.794

8.668

5

1

24.486

12.876

10.283

9.345

8.942

8.791

10

0.5

8.882

7.166

6.848

6.837

6.837

6.824

10

0.6

13.185

8.840

7.928

7.709

7.688

7.670

10

0.7

17.084

10.299

8.821

8.378

8.259

8.228

10

0.8

20.668

11.614

9.600

8.938

8.705

8.633

10

0.9

23.982

12.812

10.294

9.420

9.071

8.944

10

1

25.546

13.372

10.612

9.639

9.231

9.074

15

0.5

9.202

7.392

7.046

7.018

7.023

7.008

15

0.6

13.669

9.128

8.172

7.936

7.906

7.890

15

0.7

17.712

10.636

9.096

8.633

8.507

8.473

15

0.8

21.426

11.993

9.900

9.215

8.977

8.899

15

0.9

24.861

13.230

10.616

9.715

9.355

9.226

15

1

26.482

13.806

10.947

9.940

9.525

9.364

1.4 Appendix 4: Bearing capacity of conical foundation, H/D = 0.5

H/D = 0.5

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

7.428

6.385

6.297

6.343

6.347

6.315

0

0.6

10.255

7.451

6.934

6.911

6.887

6.865

0

0.7

12.109

8.115

7.318

7.176

7.140

7.112

0

0.8

13.413

8.597

7.590

7.354

7.281

7.240

0

0.9

14.383

8.951

7.777

7.469

7.082

7.321

0

1

14.803

9.085

7.861

7.510

7.404

7.344

1

0.5

8.017

6.828

6.708

6.772

6.766

6.756

1

0.6

11.056

8.003

7.441

7.377

7.367

7.339

1

0.7

13.050

8.727

7.859

7.686

7.647

7.600

1

0.8

14.458

9.231

8.148

7.868

7.795

7.734

1

0.9

15.496

9.597

8.345

7.990

7.899

7.823

1

1

15.930

9.744

8.413

8.026

7.921

7.848

2.5

0.5

8.498

7.197

7.037

7.079

7.084

7.065

2.5

0.6

11.716

8.425

7.803

7.721

7.722

7.701

2.5

0.7

13.815

9.187

8.235

8.025

7.999

7.974

2.5

0.8

15.298

9.710

8.521

8.217

8.158

8.120

2.5

0.9

16.397

10.089

8.724

8.337

8.272

8.203

2.5

1

16.847

10.243

8.804

8.389

8.314

8.230

5

0.5

8.945

7.483

7.310

7.332

7.337

7.317

5

0.6

12.347

8.768

8.119

8.006

8.009

7.989

5

0.7

14.553

9.559

8.575

8.333

8.314

8.275

5

0.8

16.110

10.101

8.875

8.532

8.469

8.428

5

0.9

17.268

10.493

9.086

8.665

8.584

8.521

5

1

17.738

10.650

9.165

8.715

8.632

8.543

10

0.5

9.332

7.765

7.529

7.541

7.545

7.524

10

0.6

12.887

9.110

8.376

8.237

8.239

8.216

10

0.7

15.191

9.931

8.850

8.579

8.553

8.518

10

0.8

16.814

10.493

9.161

8.790

8.725

8.677

10

0.9

18.022

10.901

9.376

8.929

8.845

8.773

10

1

18.516

11.062

9.460

8.979

8.892

8.801

15

0.5

9.671

8.012

7.747

7.745

7.751

7.729

15

0.6

13.365

9.409

8.634

8.478

8.475

8.451

15

0.7

15.751

10.256

9.128

8.840

8.809

8.768

15

0.8

17.433

10.835

9.448

9.058

8.988

8.935

15

0.9

18.684

11.257

9.670

9.200

9.075

9.032

15

1

19.195

11.427

9.757

9.255

9.111

9.065

1.5 Appendix 5: Bearing capacity of conical foundation, H/D = 1

H/D = 1

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

7.995

7.130

7.019

6.806

6.763

6.739

0

0.6

9.998

7.757

7.450

7.344

7.225

7.116

0

0.7

10.819

8.005

7.520

7.458

7.333

7.251

0

0.8

11.267

8.121

7.561

7.500

7.344

7.260

0

0.9

11.547

8.191

7.592

7.512

7.374

7.287

0

1

11.666

8.214

7.584

7.458

7.363

7.297

1

0.5

8.648

7.633

7.539

7.502

7.469

7.434

1

0.6

10.785

8.338

7.955

7.889

7.837

7.789

1

0.7

11.669

8.599

8.067

7.992

7.918

7.880

1

0.8

12.160

8.724

8.111

8.009

7.940

7.906

1

0.9

12.456

8.794

8.130

8.015

7.954

7.915

1

1

12.570

8.825

8.132

8.020

7.929

7.893

2.5

0.5

9.190

8.045

7.937

7.938

7.944

7.919

2.5

0.6

11.426

8.781

8.346

8.301

8.288

8.248

2.5

0.7

12.356

9.041

8.451

8.371

8.343

8.318

2.5

0.8

12.867

9.176

8.494

8.386

8.375

8.331

2.5

0.9

13.184

9.248

8.508

8.399

8.366

8.331

2.5

1

13.301

9.280

8.513

8.407

8.362

8.329

5

0.5

9.633

8.396

8.266

8.277

8.284

8.260

5

0.6

12.032

9.153

8.681

8.627

8.626

8.593

5

0.7

13.011

9.422

8.789

8.691

8.678

8.652

5

0.8

13.550

9.558

8.832

8.701

8.690

8.662

5

0.9

13.884

9.638

8.846

8.696

8.683

8.656

5

1

14.006

9.669

8.851

8.692

8.681

8.651

10

0.5

10.045

8.682

8.529

8.542

8.548

8.523

10

0.6

12.556

9.488

8.957

8.893

8.895

8.869

10

0.7

13.585

9.769

9.064

8.946

8.942

8.918

10

0.8

14.141

9.912

9.106

8.955

8.946

8.921

10

0.9

14.490

9.992

9.125

8.947

8.944

8.911

10

1

14.618

10.023

9.130

8.946

8.935

8.904

15

0.5

10.405

8.952

8.775

8.785

8.788

8.761

15

0.6

13.023

9.797

9.233

9.153

9.159

9.131

15

0.7

14.084

10.089

9.345

9.212

9.211

9.182

15

0.8

14.661

10.237

9.389

9.219

9.214

9.183

15

0.9

15.022

10.324

9.408

9.212

9.209

9.172

15

1

15.156

10.353

9.414

9.209

9.196

9.165

1.6 Appendix 6: Bearing capacity of conical foundation, H/D = 2.5

H/D = 2.5

ρD/suTC0

r e

β (°)

30

60

90

120

150

180

0

0.5

9.016

7.115

6.815

6.736

6.731

6.698

0

0.6

9.923

7.802

7.009

6.942

6.906

6.869

0

0.7

10.057

7.502

6.941

6.925

6.902

6.872

0

0.8

10.115

7.977

6.938

6.937

6.913

6.881

0

0.9

10.138

8.021

6.930

6.917

6.905

6.877

0

1

10.143

8.031

6.935

6.859

6.822

6.874

1

0.5

9.816

7.889

7.477

7.403

7.385

7.370

1

0.6

10.695

8.541

7.711

7.590

7.570

7.535

1

0.7

10.838

8.638

7.694

7.585

7.561

7.531

1

0.8

10.891

8.696

7.689

7.594

7.578

7.543

1

0.9

10.919

8.722

7.818

7.568

7.580

7.535

1

1

10.923

8.730

7.838

7.590

7.564

7.537

2.5

0.5

10.454

8.560

8.074

7.946

7.933

7.901

2.5

0.6

11.377

9.154

8.304

8.132

8.102

8.061

2.5

0.7

11.516

9.242

8.364

8.155

8.124

8.091

2.5

0.8

11.577

9.269

8.433

8.162

8.141

8.098

2.5

0.9

11.601

9.274

8.484

8.163

8.132

8.094

2.5

1

11.615

9.273

8.499

8.164

8.141

8.099

5

0.5

10.971

9.173

8.599

8.449

8.435

8.398

5

0.6

11.924

9.667

8.847

8.639

8.606

8.561

5

0.7

12.077

9.701

8.912

8.668

8.626

8.589

5

0.8

12.134

9.712

8.966

8.678

8.646

8.600

5

0.9

12.163

9.724

8.999

8.683

8.649

8.604

5

1

12.172

9.703

9.006

8.689

8.648

8.604

10

0.5

11.454

9.681

9.066

8.895

8.871

8.837

10

0.6

12.448

10.102

9.321

9.086

9.041

9.000

10

0.7

12.606

10.112

9.381

9.120

9.081

9.030

10

0.8

12.663

10.098

9.420

9.134

9.096

9.041

10

0.9

12.691

10.087

9.437

9.142

9.099

9.045

10

1

12.701

10.081

9.445

9.148

9.102

9.047

15

0.5

11.878

10.142

9.488

9.296

9.271

9.231

15

0.6

12.907

10.482

9.745

9.490

9.440

9.393

15

0.7

13.066

10.470

9.794

9.525

9.460

9.424

15

0.8

13.128

10.451

9.811

9.540

9.488

9.436

15

0.9

13.159

10.435

9.817

9.549

9.492

9.443

15

1

13.172

10.430

9.816

9.551

9.519

9.445

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen Van, C., Keawsawasvong, S., Nguyen, D.K. et al. Machine learning regression approach for analysis of bearing capacity of conical foundations in heterogenous and anisotropic clays. Neural Comput & Applic 35, 3955–3976 (2023). https://doi.org/10.1007/s00521-022-07893-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07893-z

Keywords

Navigation