Abstract

Metal–organic frameworks (MOFs), a family of porous crystalline materials generated by coordinated-metal ions in organic linkers, have gained more attention in the last decades due to their distinct structures and diverse uses. However, there are still technical obstacles to their practical implementation owing to MOFs’ inherent fragility and their tiny powder form, such as pipe obstruction, recovery challenges, and possible environmental toxicity. To get over these constraints, research has concentrated on ways to transform nanocrystalline MOFs into macroscopic materials. Recently, methods for forming MOFs into macrostructure beads (0D), nanofibers (1D), membranes (2D), gels/sponges (3D), and membranes with in situ growth or deposition of MOFs with polymers, cotton, foams, or other porous substrates have been devised. This chapter discusses the different uses of MOFs, including biochemistry, cancer treatment, the adsorption of pollutants, and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    current density (mA.cm−2), CN: cycle number. (*aqueous redox flow batteries).

  2. 2.

    Vanadium redox flow battery.

  3. 3.

    lithium metal batteries.

  4. 4.

    sodium metal batteries.

  5. 5.

    Secondary lithium-bromine (Li–Br2) batteries.

  6. 6.

    lithium–sulfur batteries.

  7. 7.

    Lithium-Ion Batteries.

  8. 8.

    Ketjen Black (KB).

  9. 9.

    Cellulose nanofiber.

  10. 10.

    power conversion efficiency.

  11. 11.

    short-circuit current density.

  12. 12.

    open-circuit voltage.

  13. 13.

    fill factor.

  14. 14.

    Matrimid/NH2-PVDF (97/3) + 7 wt% NH2-MIL-101(Cr).

  15. 15.

    polystyrene-acrylate (PSA) modified hollow ZIF-8 (PHZ).

  16. 16.

    2D/2D FeNi-layered double hydroxide/bimetal-organic frameworks nanosheets.

  17. 17.

    Tetracycline hydrochloride.

  18. 18.

    Orange peel peroxidase.

  19. 19.

    Methylene blue.

  20. 20.

    Congo red.

  21. 21.

    Tetracycline.

  22. 22.

    Aerogels.

  23. 23.

    P-nitrophenol.

  24. 24.

    Sulfamethoxazole.

  25. 25.

    Carbamazepine.

  26. 26.

    Hydroxyapatite nanowires.

  27. 27.

    Direct red 23.

  28. 28.

    Diatom biosilica.

  29. 29.

    Malachite green.

  30. 30.

    Nanofibers.

  31. 31.

    Ionic liquid.

References

  1. Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal-organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x

    Article  Google Scholar 

  2. Zhai, Q.G., Bu, X., Zhao, X., Li, D.S., Feng, P.: (2017) Pore space partition in metal-organic frameworks. Acc. Chem. Res. 50(2), 407–417 (2017). https://doi.org/10.1021/acs.accounts.6b00526

    Article  Google Scholar 

  3. Deng, H., Doonan, C.J., Furukawa, H., Ferreira, R.B., Towne, J., Knobler, C.B., Wang, B., Yaghi, O.M.: Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53(12), 5881–5883 (2014). https://doi.org/10.1021/ic500434a

    Article  Google Scholar 

  4. Shen, K., Chen, X., Chen, J., Li, Y.: Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal. 6(9), 5887–5903 (2016). https://doi.org/10.1021/acscatal.6b01222

    Article  Google Scholar 

  5. Wang, H., Zhu, Q.L., Zou, R., Xu, Q.: Metal-organic frameworks for energy applications. Chem 2(1), 52–80 (2017). https://doi.org/10.1016/j.chempr.2016.12.002

    Article  Google Scholar 

  6. Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012). https://doi.org/10.1021/cr200304e

    Article  Google Scholar 

  7. Sun, Y.X., Sun, W.Y.: Influence of temperature on metal-organic frameworks. Chin. Chem. Lett. 25, 823–828 (2014). https://doi.org/10.1016/j.cclet.2014.04.032

    Article  Google Scholar 

  8. Li, C., Shi, Y., Zhang, H., Zhao, Q., Xue, F., Li, X.: Cu-BTC metal-organic framework as a novel catalyst for low temperature selective catalytic reduction (SCR) of NO by NH3: promotional effect of activation temperature. Integr. Ferroelectr. 172, 169–179 (2016). https://doi.org/10.1080/10584587.2016.1177385

    Article  Google Scholar 

  9. Canivet, J., Vandichel, M., Farrusseng, D.: Origin of highly active metal-organic framework catalysts: defects? Defects! Dalton Trans. 45, 4090–4099 (2016). https://doi.org/10.1039/C5DT03522H

    Article  Google Scholar 

  10. Bang, J.H., Suslick, K.S.: Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039 (2010). https://doi.org/10.1002/adma.200904093

    Article  Google Scholar 

  11. Ahrenholtz, S.R., Landaverde-Alvarado, C., Whiting, M., Lin, S., Slebodnick, C., Marand, E., Morris, A.J.: Thermodynamic study of CO2 sorption by polymorphic microporous MOFs with open Zn (II) coordination sites. Inorg. Chem. 54, 4328–4336 (2015). https://doi.org/10.1021/ic503047y

    Article  Google Scholar 

  12. Morris, R.E., Cejka, J.: Exploiting chemically selective weakness in solids as a route to new porous materials. Nat. Chem. 7, 381–388 (2015). https://doi.org/10.1038/nchem.2222

    Article  Google Scholar 

  13. Diring, S., Furukawa, S., Takashima, Y., Tsuruoka, T., Kitagawa, S.: Controlled multiscale synthesis of porous coordination polymer in Nano/Micro regimes. Chem. Mater. 22, 4531 (2010). https://doi.org/10.1021/cm101778g

    Article  Google Scholar 

  14. Wang, D., Huang, R., Liu, W., Sun, D., Li, Z.: Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254–4260 (2014). https://doi.org/10.1021/cs501169t

    Article  Google Scholar 

  15. **ao Zhang, B.S., Zhu, S., Xu, H., Tian, L.: UiO-66 and its Br-modified derivates for elemental mercury removal. J. Hazard. Mater. 320, 556–563 (2016). https://doi.org/10.1016/j.jhazmat.2016.08.039

    Article  Google Scholar 

  16. Xu, C., Qiao, Z., Hou, B., Jiang, H., Gong, W., Dong, J., Li, H., Cui, Y., Liu, Y.: Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res. 14(2), 466-472 (2021).‏ https://doi.org/10.1007/s12274-020-2905-7

  17. Feng, X., Song, Y., Lin, W.: Dimensional reduction of Lewis acidic metal-organic frameworks for multicomponent reactions. J. Am. Chem. Soc. 143(21), 8184–8192 (2021). https://doi.org/10.1021/jacs.1c03561

    Article  Google Scholar 

  18. Lei, Z., Deng, Y., Wang, C.: Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. J. Mater. Chem. A 6(7), 3258–3263 (2018). https://doi.org/10.1039/C7TA10566E

    Article  Google Scholar 

  19. Akbarian, M., Sanchooli, E., Oveisi, A.L., Daliran, S.: chloride-coated UiO-66-Urea MOF: a novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J. Mol. Liq. 325, 115228 (2021). https://doi.org/10.1016/j.molliq.2020.115228

    Article  Google Scholar 

  20. Ghobakhloo, F., Azarifar, D., Mohammadi, M., Keypour, H., Zeynali, H.: Copper (II) Schiff-base complex modified UiO-66-NH2 (Zr) metal–organic framework catalysts for Knoevenagel condensation–michael addition–cyclization reactions. Inorg. Chem. 61(12), 4825–4841 (2022). https://doi.org/10.1021/acs.inorgchem.1c03284

  21. Jrada, A., Hmadeh, M., Awada, G., Chakleha, R., Ahmad, M.: Efficient biofuel production by MTV-UiO-66 based catalysts. Chem. Eng. J. 410, 128237 (2021). https://doi.org/10.1016/j.cej.2020.128237

    Article  Google Scholar 

  22. Günsev, D., Sert, E.: Fuel additive synthesis by acetylation of glycerol using activated carbon/UiO-66 composite materials. Fuel 281, 118584 (2020). https://doi.org/10.1016/j.fuel.2020.118584

    Article  Google Scholar 

  23. Li, X., Huang, L., Kochubei, A., Huang, J., Shen, W., Xu, H., Li, Q.: Evolution of a metal-organic framework into a Brønsted acid catalyst for glycerol dehydration to Acrolein. Chemsuschem 13(18), 5073–5079 (2020). https://doi.org/10.1002/cssc.202001377

    Article  Google Scholar 

  24. Yılmaz, E., Sert, E., Atalay, S., Atalay, F.S.: Fabrication of chromium-based metal organic framework (MIL-101)/activated carbon composites for acetylation of glycerol. J. Taiwan Inst. Chem. Eng. 120, 93–105 (2021).https://doi.org/10.1016/j.jtice.2021.03.034

  25. Gao, M.L., Qi, M.H., Liu, L., Han, Z.B.: An exceptionally stable core–shell MOF/COF bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation reaction. Chem. Commun. 55(45), 6377–6380 (2019). https://doi.org/10.1039/C9CC02174D

    Article  Google Scholar 

  26. Guang, S.H., Tan, L.S., Zheng, Q., Paras, N.P.: Multiphoton absorbing materials: molecular designs, characterizations, and applications Chem. Rev. 108, 1245–1330 (2008). https://doi.org/10.1021/cr050054x

    Article  Google Scholar 

  27. Zhan, W.W., Zhu, Q.L., Dang, S., Liu, Z., Kitta, M., Suenaga, K., Zheng, L.S., Xu, Q.: Synthesis of Highly active sub-nanometer Pt@Rh core–Shell Nanocatalyst via a photochemical route: Porous Titania Nanoplates as a superior photoactive support small nano micro 13, 1603879 (2017). https://doi.org/10.1002/smll.201603879

  28. Bai, G., Tsang, M.K., Hao, J.: Tuning the luminescence of phosphors: beyond conventional chemical MethodAdv. Opt. Mater. 3, 431–462 (2015). https://doi.org/10.1002/adom.201400375

    Article  Google Scholar 

  29. Cui, Y., Zhang, J., Hea, H., Qian: Photonic functional metal–organic frameworks. Chem. Soc. Rev. 47, 5740–5785 (2018).https://doi.org/10.1039/C7CS00879A

  30. Cui, Y., Chen, B., Qian, G.: Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications Chem. Rev. 273–274, 76–86 (2014). https://doi.org/10.1016/j.ccr.2013.10.023

    Article  Google Scholar 

  31. Rocha, J., Carlos, L.D., Paz, F.D., Ananias, D.: Luminescent multifunctional lanthanides-based metal–organic frameworks Chem. Soc. Rev. 40, 926–940 (2011). https://doi.org/10.1039/C0CS00130A

    Article  Google Scholar 

  32. Rybak, J.C., Meyer, L.V., Wagenhofer, J., Sextl, G., Mu¨ller-Buschbaum, K.: Homoleptic Lanthanide 1,2,3-Triazolates ∞2–3[Ln (Tz*)3] and their diversified photoluminescence properties (2012) Inorg. Chem. 51, 13204–13213. https://doi.org/10.1021/ic301482e

  33. Liu, W., Zhu, K., Teat, S.J., Dey, G., Shen, Z., Wang, L., O’Carroll, D.M., Li, J.: All-in-one: achieving robust, strongly luminescent and highly dispersible hybrid materials by combining ionic and coordinate bonds in molecular crystals. J. Am. Chem. Soc. 139, 9281–9290 (2017). https://doi.org/10.1021/jacs.7b04550

    Article  Google Scholar 

  34. Weisheng Liu, T.J., Li, Y.I., Liu, Q., Tan, M., Wang, H., Wang, L.: Lanthanide coordination polymers and their Ag+-modulated fluorescence. J. Am. Chem. Soc. 126, 2280–2281 (2004). https://doi.org/10.1021/ja036635q

    Article  Google Scholar 

  35. Hu, Z., Tan, K., Lustig, W.P., Wang, H., Zhao, Y., Zheng, C., Banerjee, D., Emge, T.J., Chabal, Y.J., Li, J.: Effective sensing of RDX via instant and selective detection of ketone vaporsChem. Science 5, 4873–4877 (2014).https://doi.org/10.1039/C4SC02157F

  36. Hao, J.N., Yan, B.: Determination of Urinary 1-hydroxypyrene for biomonitoring of human exposure to polycyclic aromatic hydrocarbons carcinogens by a lanthanide-functionalized metal-organic framework sensor Adv. Funct. Mater. 27, 1603856 (2017). https://doi.org/10.1002/adfm.201603856

    Article  Google Scholar 

  37. Sanda, S., Parshamoni, S., Biswas, S., Konar, S.: Highly selective detection of palladium and picric acid by a luminescent MOF: a dual functional fluorescent sensor. Chem. Commun. 51, 6576–6579 (2015). https://doi.org/10.1039/C4CC10442K

  38. Buso, D., Jasieniak, J., Lay, M.D., Schiavuta, P., Scopece, P., Laird, J., Amenitsch, H., Hill, A.J., Falcaro, P.: Highly luminescent metal-organic frameworks through quantum dot do**. Small 2012(8), 80–88 (2012). https://doi.org/10.1002/smll.201100710

    Article  Google Scholar 

  39. Lu, G., Li, S., Guo, Z., Farha, O.K., Hauser, B.G., Qi, X., Wang, Y., Wang, X., Han, S., Liu, X., DuChene, J.S., Zhang, H., Zhang, Q., Chen, X., Ma, J., Loo, S.C., Wei, W.D., Yang, Y., Hupp, J.T., Huo, F.: Facile synthesis of size-tunable ZIF-8 nanocrystals using reverse micelles as nanoreactorsNat. Chem. 4, 310–316 (2014). https://doi.org/10.1007/s11426-013-5008-4

    Article  Google Scholar 

  40. He, H., Ma, E., Cui, Y., Yu, J., Yang, Y., Song, T., Wu, C.D., Chen, X., Chen, B., Qian, G.: Polarized three-photon-pumped laser in a single MOF microcrystal Nat. Commun. 7, 11087–11093 (2016). https://doi.org/10.1038/ncomms11087

    Article  Google Scholar 

  41. Haoa, J.N., Yan, B.: Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF Nanoscale 8, 2881–2886 (2016). https://doi.org/10.1039/C5NR06066D

    Article  Google Scholar 

  42. Zhang, C., Wang, B., Li, W., Huang, S., Kong, L., Li, Z., Li, L.: Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption Nat. Commun. 8, 1138–1146 (2017). https://doi.org/10.1038/s41467-017-01248-2

    Article  Google Scholar 

  43. Li, B., Wen, H.M., Cui, Y., Zhou, W., Qian, G., Chen, B.: Emerging multifunctional metal-organic framework materials Adv. Mater. 28, 1–42 (2016). https://doi.org/10.1002/adma.201601133

    Article  Google Scholar 

  44. Song, X.Z., Song, S.Y., Zhao, S.N., Hao, Z.M., Zhu, M., Meng, X., Wu, L.L., Zhang, H.J.: Single-crystal-to-single-crystal transformation of a europium (III) metal-organic framework producing a multi-responsive luminescent sensor Adv. Funct. Mater. 24, 4034–4041 (2014). https://doi.org/10.1002/adfm.201303986

    Article  Google Scholar 

  45. Zhang, M., Feng, G., Song, Z., Zhou, Y.P., Chao, H.Y., Yuan, D., Tan, T.T., Guo, Z., Hu, Z., Tang, B.Z., Liu, B., Zhao, D.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc.136, 7241–7244 (2014).https://doi.org/10.1021/ja502643p

  46. Douvali, A., Tsipis, A.C., Eliseeva, S.V., Petoud, S., Papaefstathiou, G.S., Malliakas, C.D., Papadas, I., Armatas, G.S., Margiolaki, I., Kanatzidis, M.G., Lazarides, T., Manos, M.J.: Turn-on luminescence sensing and real-time detection of traces of water in organic solvents by a flexible metal–organic framework. Angew. Chem. Int. Ed. 54, 1651–1656 (2015). https://doi.org/10.1002/ange.201410612

  47. Falcaro, P., Ricco, R., Doherty, C.M., Liang, K., Hill, A.J., Styles, M.J.: MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (20114). https://doi.org/10.1039/C4CS00089G

  48. Yang, Q.Y., Pan, M., Wei, S.C., Li, K., Du, B.B., Su, C.Y.: Linear dependence of photoluminescence in mixed Ln-MOFs for color Tunability and barcode application Inorg. Chem. 54, 5707–5716 (2015). https://doi.org/10.1021/acs.inorgchem.5b00271

    Article  Google Scholar 

  49. Zhou, Y., Yan, B.: Ratiometric multiplexed barcodes based on luminescent metal–organic framework films J. Mater. Chem. C 3, 8413–8418 (2015). https://doi.org/10.1039/C5TC01311A

    Article  Google Scholar 

  50. Lustig, W.P., Wang, F., Teat, S.J., Hu, Z., Gong, Q., Li, J.: Chromophore-based luminescent metal-organic frameworks as lighting phosphors Inorg. Chem. 55, 7250–7256 (2016). https://doi.org/10.1021/acs.inorgchem.6b00897

    Article  Google Scholar 

  51. Bachmann, V., Ronda, C., Meijerink, A.: Temperature quenching of yellow Ce3+ luminescence in YAG: Ce Chem. Mater. 21, 2077–2084 (2009). https://doi.org/10.1021/cm8030768

    Article  Google Scholar 

  52. Lu, Z.Z., Zhang, R., Li, Y.Z., Guo, Z.J., Zheng, H.G.: Solvatochromic behavior of a nanotubular metal–organic framework for sensing small molecules. J. Am. Chem. Soc. 133, 4172–4174 (2011). https://doi.org/10.1021/ja109437d

    Article  Google Scholar 

  53. Yang, C.X., Ren, H.B., Yan, X.P.: Fluorescent metal–organic framework MIL-53(Al) for highly selective and sensitive detection of Fe3+ in aqueous solution. Anal. Chem. 85, 7441–7446 (2013). https://doi.org/10.1021/ac401387z

    Article  Google Scholar 

  54. Chen, L.F., Zheng, H.Z., Zhu, X., Lin, Z.Y., Guo, L.H., Qiu, B., Chen, G.N., Chen, Z.N.: Metal–organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA. Analyst 138, 3490–3493 (2013). https://doi.org/10.1039/C3AN00426K

    Article  Google Scholar 

  55. Tan, H.L., Liu, B.X., Chen, Y.: Lanthanide coordination polymer nanoparticles for sensing of mercury (II) by photoinduced electron transfer. ACS Nano 6, 10505–10511 (2012). https://doi.org/10.1021/nn304469j

    Article  Google Scholar 

  56. Shahat, A., Hassan, H.M.A., Azzazy, H.M.E.: Optical metal–organic framework sensor for selective discrimination of some toxic metal ions in water. Anal. Chim. Acta 793, 90–98 (2013). https://doi.org/10.1016/j.aca.2013.07.012

    Article  Google Scholar 

  57. Liu, X.L., Zhao, X.J., Yang, X.X., Li, Y.F.: nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138, 4526–4531 (2013). https://doi.org/10.1039/C3AN00560G

    Article  Google Scholar 

  58. Ma, W.J., Jiang, Q., Yu, P., Yang, L.F., Mao, L.Q.: Zeolitic imidazolate frameworkbased electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem. 85, 7550–7557 (2013). https://doi.org/10.1021/ac401576u

    Article  Google Scholar 

  59. Wang, Y., Wu, Y.C., **e, J., Ge, H.L., Hu, X.Y.: Multi-walled carbon nanotubes and metal–organic framework nanocomposites as novel hybrid electrode materials for the determination of nano-molar levels of lead in a lab-on-valve format. Analyst 138, 5113–5120 (2013). https://doi.org/10.1039/C3AN00598D

    Article  Google Scholar 

  60. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Tadjarod, A., Fakhari, A.R.: A novel electrochemical sensor based on metal–organic framework for electrocatalytic oxidation of L-cysteine. Biosens. Bioelectron. 42, 426–429 (2013). https://doi.org/10.1016/j.bios.2012.09.062

    Article  Google Scholar 

  61. Hosseini, H., Ahmar, H., Dehghani, A., Bagheri, A., Fakhari, A.R., Amini, M.M.: Au- SH-SiO2 nanoparticles supported on metal-organic framework (Au-SHSiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochim. Acta 88, 301–309 (2013). https://doi.org/10.1016/j.electacta.2012.10.064

    Article  Google Scholar 

  62. Wang, F., Zhao, J.B., Gong, J.M., Wen, L.L., Zhou, L., Li, D.F.: New multifunctional porous materials based on inorganic–organic hybrid single-walled carbon nanotubes: gas storage and high-sensitive detection of pesticides. Chem. Eur. J. 18, 11804–11810 (2012). https://doi.org/10.1002/chem.201200383

  63. Lu, G., Hupp, J.T.: Metal–organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010). https://doi.org/10.1021/ja101415b

    Article  Google Scholar 

  64. Achmann, S., Hagen, G., Kita, J., Malkowsky, I.M., Kiener, C., Moos, R.: Metal-organic frameworks for sensing applications in the gas phase. Sensors,1574–1589 (2009). https://doi.org/10.3390/s90301574

  65. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al.: Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Trans. Ind. Electron. 53, 1002–16 (2006). https://doi.org/10.1109/TIE.2006.878356

  66. Zhang, Y., Lin, B., Wang, J., Tian, J., Sun, Y., Zhang, X., Yang, H.: All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template. J. Mater. 1 Chem. A 42,10282–10293 (2016). https://doi.org/10.1039/C6TA03633C

  67. Li, C., Liu, L., Kang, J., **ao, Y., Feng, Y., Cao, F.F., Zhang, H.: Pristine MOF and COF materials for advanced batteries. Energy Storage Mater. 31,115–134. https://doi.org/10.1016/j.ensm.2020.06.005

  68. Guo, Y., Dai, Z., Lu, J., Zeng, X., Yuan, Y., Bi, X., Ma, L., Wu, T., Yan, Q., Amine, K.: Lithiation-induced non-noble metal nanoparticles for Li–O2 batteries ACS Appl. Mater. Inter. 11, 811–818 (2019). https://doi.org/10.1021/acsami.8b17417

    Article  Google Scholar 

  69. Wu, D., Guo, Z., Yin, X., Pang, Q., Tu, B., Zhang, L., Wang, Y.G., Li, Q.: Metal-organic frameworks as cathode materials for Li–O2 batteries Adv. Mater. 26, 3258–3262 (2014). https://doi.org/10.1002/adma.201305492

    Article  Google Scholar 

  70. Li, C., Liu, L., Kang, J., **ao, Y., Feng, Y., Cao, F.F., Zhang, H.: Pristine MOF and COF materials for advanced batteries. Energy Storage Mater. 31, 115–134 (2020), ISSN 2405–8297. https://doi.org/10.1016/j.ensm.2020.06.005

  71. Hong, X.J., Song, C.L., Yang, Y., Tan, H.C., Li, G.H., Cai, Y.P., Wang, H.: Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of Polysulfides for high performance lithium-sulfur batteries. ACS Nano 13, 1923–1931 (2019). https://doi.org/10.1021/acsnano.8b08155

    Article  Google Scholar 

  72. Bai, S., Zhu, K., Wu, S., Wang, Y., Yi, J., Ishida, M., Zhou, H.: A long-life lithium–sulphur battery by integrating zinc–organic framework-based separator. J. Mater. Chem. A 4, 16812–16817 (2016). https://doi.org/10.1039/C6TA07337A

  73. Wang, Z., Huang, W., Hua, J., Wang, Y., Yi, H., Zhao, W., Zhao, Q., Jia, H., Fei, B., Pan, F.: An Anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing Polysulfides shuttle in Li–S batteries. Small Methods 4, 2000082 (2020). https://doi.org/10.1002/smtd.202000082

    Article  Google Scholar 

  74. Dang, T., Zhang, G., Li, Q., Cao, Z., Zhang, G., Duan, H.: Ultrathin hetero-nanosheets assembled hollow Ni-Co-P/C for hybrid supercapacitors with enhanced rate capability and cyclic stability. J. Colloid Interface Sci. 577, 368–378 (2020). https://doi.org/10.1016/j.jcis.2020.05.065.

  75. Zhang, F., Zhang, J., Ma, J., Zhao, Z., Li, Y., Li, R.: Polyvinylpyrrolidone (PVP) assisted in-situ construction of vertical metal-organic frameworks nanoplate arrays with enhanced electrochemical performance for hybrid supercapacitors. J. Colloid Interface Sci. 593, 32–40 (2021). https://doi.org/10.1016/j.jcis.2021.02.101

    Article  Google Scholar 

  76. Zhang, Z., Huang, Y., Li, C., Li, X.: Metal-organic framework-supported poly (ethylene oxide) composite gel polymer electrolytes for high-performance lithium/sodium metal batteries. ACS Appl. Mater. Interfaces. 13(31), 37262–37272 (2021). https://doi.org/10.1021/acsami.1c11476

    Article  Google Scholar 

  77. Peterson, B.B., Andrews, E.M., Hung, F., Flakea, J.C.: Carbonized metal-organic framework cathodes for secondary lithium-bromine batteries. J. Power Sources 492, 229658 (2021). https://doi.org/10.1016/j.jpowsour.2021.229658

    Article  Google Scholar 

  78. Yang, D., Liang, Z., Tang, P., Zhang, C., Tang, M., Li, Q., Biendicho, J.J., Li, J., Heggen, M., Dunin-Borkowski, R.E., Xu, M., Llorca, J., Arbiol, J., Morante, J.R., Chou, S.L., Cabot, A.: A high conductivity one‐dimensional π‐d conjugated metal‐organic framework with efficient polysulfide trap**‐diffusion‐catalysis in lithium‐sulfur batteries. Adv. Mater., 2108835 (2022).‏ https://doi.org/10.1002/adma.202108835

  79. Li, X., He, C., Zheng, J., Wu, D., Duan, Y., Li, Y., Rao, P., Tang, B., Rui, Y.: Flocculent Cu caused by the Jahn-Teller effect improved the performance of Mg-MOF-74 as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 12(47), 52864–52872 (2020). https://doi.org/10.1021/acsami.0c17408

    Article  Google Scholar 

  80. Capkováa, D., Almáši, M., Kazda, T., Čech, O., Király, N., Čudekc, P., Fedorkováa, A.S., Hornebecqd, V.: Metal-organic framework MIL-101 (Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim. Acta 354, 136640 (2020). https://doi.org/10.1016/j.electacta.2020.136640

    Article  Google Scholar 

  81. **, L., Fu, Z., Qian, X., Li, F., Wang, Y., Wang, B., Shen, X.: Co-N/KB porous hybrid derived from ZIF 67/KB as a separator modification material for lithium-sulfur batteries. Electrochim. Acta 382, 138282 (2021). https://doi.org/10.1016/j.electacta.2021.138282

    Article  Google Scholar 

  82. Qi, C., Xu, L., Wang, J., Li, H., Zhao, C., Wang, L., Liu, T.: Titanium-containing metal–organic framework modified separator for advanced lithium–sulfur batteries. ACS Sustain. Chem. Eng. 8(34), 12968–12975 (2020). https://doi.org/10.1021/acssuschemeng.0c03536

    Article  Google Scholar 

  83. Zhang, F., Niu, T., Wu, F., Wu, L., Wang, G., Li, J.: Highly oriented MIL-101 (Cr) continuous films grown on carbon cloth as efficient polysulfide barrier for lithium-sulfur batteries. Electrochim. Acta 392, 139028 (2021). https://doi.org/10.1016/j.electacta.2021.139028

    Article  Google Scholar 

  84. Sun, X., Xu, W., Zhang, X., Lei, T., Lee, S.Y., Wu, Q.: ZIF-67@ Cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J. Energy Chem. 52, 170–180 (2021). https://doi.org/10.1016/j.jechem.2020.04.057

    Article  Google Scholar 

  85. Wang, L., Liu, H., Zhao, J., Zhang, X., Zhang, C., Zhang, G., Liu, Q., Duan, H.: Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors. Chem. Eng. J. 382, 122979 (2020). https://doi.org/10.1016/j.cej.2019.122979

    Article  Google Scholar 

  86. Zhang, D., Zhang, J., Pan, M., Wang, Y., Sun, T.: Necklace-like C-ZIF-8@ MWCNTs fabricated by electrochemical deposition towards enhanced supercapacitor. J. Alloy. Compd. 853, 157368 (2021). https://doi.org/10.1016/j.jallcom.2020.157368

    Article  Google Scholar 

  87. Liu, H., Gong, L.G., Wang, C.X., Wang, C.M., Yu, Zhou, B.B.: {Cu 2 SiW 12 O 40} @ HKUST-1 synthesized by a one-step solution method with efficient bifunctional activity for supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 9(22), 13161–13169 (2021). https://doi.org/10.1039/D1TA01503F

  88. Huang, S., Shi, X.R., Sun, C., Zhang, X., Huang, M., Liu, R., Wang, H., Xu, S.: Template-controlled in-situ growing of NiCo-MOF nanosheets on Ni foam with mixed linkers for high performance asymmetric supercapacitors. Appl. Surf. Sci. 572, 151344 (2022). https://doi.org/10.1016/j.apsusc.2021.151344

    Article  Google Scholar 

  89. Kannangara, Y.Y., Rathnayake, U.A., Song, J.K.: Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material. Electrochim. Acta 297, 145–154 (2019). https://doi.org/10.1016/j.electacta.2018.11.186

    Article  Google Scholar 

  90. Shrivastav, V., Sundriyal, S.H., Kaur, A., Tiwari, U.K., Mishra, S., Deep, A.K.: Conductive and porous ZIF-67/PEDOT hybrid composite as superior electrode for all-solid-state symmetrical supercapacitors. J. Alloy. Compd. 843, 155992 (2020). https://doi.org/10.1016/j.jallcom.2020.155992

    Article  Google Scholar 

  91. Ezeigwe, E.R., Dong, L., Wang, J., Wang, L., Yan, W., Zhang, J.: MOF-deviated zinc-nickel–cobalt ZIF-67 electrode material for high-performance symmetrical coin-shaped supercapacitors. J. Colloid Interface Sci. 574, 140–151 (2020). https://doi.org/10.1016/j.jcis.2020.04.025

    Article  Google Scholar 

  92. Sundriyal, S., Shrivastav, V., Mishra, S., Deep, A.: Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors. Int. J. Hydrogen Energy 45(55), 30859–30869 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.075

    Article  Google Scholar 

  93. Wang, G., Li, Y., Xu, L., **, Z., Wang, Y.: Facile synthesis of difunctional NiV LDH@ ZIF-67 pn junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renew. Energy 162, 535–549 (2020). https://doi.org/10.1016/j.renene.2020.08.053

    Article  Google Scholar 

  94. Yang, J., Chen, L., Li, W., Chen, G., Wang, L., Zhao, S.: A novel self-supported structure of Ce-UiO-66/TNF in a redox electrolyte with high supercapacitive performance. J. Colloid Interface Sci. 573, 55–61 (2020). https://doi.org/10.1016/j.jcis.2020.03.115

    Article  Google Scholar 

  95. Wang, Y., Yue, Y., Yang, X., Han, L.: Toward long-term stable and highly efficient perovskite solar cells via effective charge transporting materials. Adv. Energy Mater. 8, 1800249 (2018). https://doi.org/10.1002/aenm.201800249

    Article  Google Scholar 

  96. Wang, H., Zhu, C., Liu, L., Ma, S., Liu, P., Wu, J., Shi, C., Du, Q., Hao, Y., **ang, S., Chen, H., Chen, P., Bai, Y., Zhou, Y., Li, Q.: Patterns of use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers among patients with acute myocardial infarction in China from 2001 to 2011: China PEACE-Retrospective AMI study. Chen. Adv. Mater. 31, 1904408 (2019). https://doi.org/10.1161/JAHA.114.001343

  97. Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112(2), 673–674 (2012). https://doi.org/10.1021/cr300014x

  98. Zhou, H.C., Kitagawa, S.: Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415 (2014). https://doi.org/10.1039/C4CS90059F

  99. Ma, S., Zhou, H.C.: Gas storage in porous metal–organic frameworks for clean energy applications. Chem. Commun. 46, 44 (2010). https://doi.org/10.1039/B916295J

  100. Li, B., Wen, H.M., Cui, Y., Zhou, W., Qian, G., Chen, B.: Emerging multifunctional metal-organic framework materials Adv. Mater. 28, 8819 (2016). https://doi.org/10.1002/adma.201601133

    Article  Google Scholar 

  101. Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal-organic framework materials as chemical sensors Chem. Rev. 112, 1105 (2011). https://doi.org/10.1021/cr200324t

    Article  Google Scholar 

  102. Hu, Z., Deibert, B.J., Li, J.: Metal-organic framework materials as chemical sensors Chem. Soc. Rev. 43, 5815 (2014). https://doi.org/10.1021/cr200324t

    Article  Google Scholar 

  103. Yamada, T., Otsubo, K., Makiura, R.: Kitagawa H (2013) Designer coordination polymers: dimensional crossover architectures and proton conduction Chem. Soc. Rev. 42, 6655 (2013). https://doi.org/10.1039/C3CS60028A

    Article  Google Scholar 

  104. Horcajada, P., Gref, R., Baati, T., Allan, P.T., Maurin, G., Couvreur, P., Férey, G., Morris, R.E.: Metal-organic frameworks in Biomedicine Serre C Chem. Rev. 112, 1232 (2011). https://doi.org/10.1021/cr200256v

    Article  Google Scholar 

  105. Fujita, M., Kwon, Y.J., Washizu, S., Ogura, K.: Preparation, Clathration ability, and catalysis of a two-dimensional square network material composed of Cadmium (II) and 4,4’-Bipyridine. J. Am. Chem. Soc. 116, 1151 (1994). https://doi.org/10.1021/ja00082a055

    Article  Google Scholar 

  106. Farrusseng, D., Aguado, S., Pinel.: Metal–organic frameworks: opportunities for catalysis C. Angew. Chem. Int. Ed. 48, 7502 (2009). https://doi.org/10.1002/anie.200806063

  107. Vielstich, W., Lamm, A., Gasteiger, H.A.: Handbook of Fuel Cells. Wiley, New York (2009)

    Google Scholar 

  108. Morozan, A., Jaouen, F.: Metal organic frameworks for electrochemical applications Energy Environ. Sci. 5, 9269 (2012). https://doi.org/10.1039/C2EE22989G

    Article  Google Scholar 

  109. Agmon, N.: Structure and Energetics of the Hydronium Hydration Shells Chem. Phys. Lett. 244, 456 (1995). https://doi.org/10.1021/jp068960g

    Article  Google Scholar 

  110. Rowsell, J.L.C., Yaghi, O.M.: Strategies for hydrogen storage in metal-organic frameworks Angew. Chem. Int. Ed. 44, 4670 (2005). https://doi.org/10.1002/anie.200462786

    Article  Google Scholar 

  111. Lin, X., Telepeni, I., Blake, A.J., Dailly, A., Brown, C.M., Simmons, J.M., Zoppi, M., Walker, G.S., Thomas, K.M., Mays, T.J., Hubberstey, P., Champness, N.R., Schröder, M.: J. Am. Chem. Soc. 131, 2159 (2009). https://doi.org/10.1021/ja806624j

    Article  Google Scholar 

  112. Kwak, W.J., Lau, K.C., Shin, C.D., Amine, K., Curtiss, L.A., Sun, Y.K.: A Mo2C/Carbon nanotube composite cathode for lithium–oxygen batteries with high energy efficiency and long cycle life. ACS Nano 9, 4129–4137 (2015). https://doi.org/10.1021/acsnano.5b00267

    Article  Google Scholar 

  113. Mehtaba, T., Yasinb, G., Arifc, M., Shakeelc, M., Koraic, R.M., Nadeemd, M., Muhammadc, N., Lu, X.: Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage 21, 632–646 (2019). https://doi.org/10.1016/j.est.2018.12.025

    Article  Google Scholar 

  114. Zhou, C., Longley, L., Krajnc, A., Smales, G.J., Qiao, A., Erucar, I., Doherty, C.M., Thornton, A.W., Hill, A.J., Ashling, C.W., Qazvini, O.T., Lee, S.J., Chater, P.A., Terrill, N.J., Smith, A.J., Yue, Y., Mali, G., Keen, D.A., Telfer, S.G., Bennett, T.D.: Nat. Commun. 9, 5042 (2018). https://doi.org/10.1038/s41467-018-07532-z

    Article  Google Scholar 

  115. Liu, N., Cheng, J., Hu, L., Hou, W., Yang, X., Luo, M., Zhang, H., Ye, B., Zhou, J.: Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like “expressway” channels with anion pillared hybrid ultramicroporous materials. Chem. Eng. J. 427, 130845 (2022). https://doi.org/10.1016/j.cej.2021.130845

    Article  Google Scholar 

  116. Rajati, H., Navarchian, A.H., Rodrigue, D., Tangestaninejad, S.H.: Improved CO2 transport properties of Matrimid membranes by adding amine-functionalized PVDF and MIL-101 (Cr). Sep. Purif. Technol. 235, 116149 (2020). https://doi.org/10.1016/j.seppur.2019.116149

    Article  Google Scholar 

  117. Ding, R., Dai, Y., Zheng, W., Li, X., Yan, X., Liu, Y., Ruan, X., Li, S.H., Yang, X., Yang, K., He, G.: Vesicles-shaped MOF-based mixed matrix membranes with intensified interfacial affinity and CO2 transport freeway. Chem. Eng. J. 414, 128807 (2021). https://doi.org/10.1016/j.cej.2021.128807

    Article  Google Scholar 

  118. Wang, B., Qiao, Z., Xu, J., Wang, J., Liu, X., Zhao, S., Wang, Z., Michael, D.: GuiverUnobstructed ultrathin gas transport channels in composite membranes by interfacial self-assembly. Adv. Mater. 32(22), 1907701 (2020). https://doi.org/10.1002/adma.201907701

    Article  Google Scholar 

  119. Zhang, X., Lin, R.B., Wu, H., Huang, Y., Ye, Y., Duan, J., Zhou, W., Li, J.R., Chen, B.: Maximizing acetylene packing density for highly efficient C2H2/CO2 separation through immobilization of amine sites within a prototype MOF. Chem. Eng. J. 431, 134184 (2022). https://doi.org/10.1016/j.cej.2021.134184

    Article  Google Scholar 

  120. Lin, Z.T., Liu, Q.Y., Yang, L., He, C.T., Li, L., Wang, Y.L.: Fluorinated Biphenyldicarboxylate-based metal-organic framework exhibiting efficient Propyne/Propylene separation. Inorg. Chem. 59(6), 4030–4036 (2020). https://doi.org/10.1021/acs.inorgchem.0c00003

    Article  Google Scholar 

  121. Wang, G.D., Wang, H.H., Shi, W.J., Hou, L., Wang, Y.Y., Zhu, Z.: A highly stable MOF with F and N accessible sites for efficient capture and separation of acetylene from ternary mixtures. J. Mater. Chem. A 9(43), 24495–24502 (2021). https://doi.org/10.1039/D1TA05720K

    Article  Google Scholar 

  122. Niu, Z., Cui, X., Pham, T., Verma, G., Lan, P.C., Shan, C., **ng, H., Forrest, K.A., Suepaul, S.H., Space, B., Nafady A,Al-Enizi, A.M., Ma, S.: A MOF‐based ultra‐strong acetylene Nano‐trap for highly efficient C2H2/CO2 Separation. Angewandte Chemie 133(10), 5343–5348 (2021).‏ https://doi.org/10.1002/ange.202016225

  123. Pei, J., Shao, K., Wang, J.X., Wen, H.M., Yang, Y., Cui, Y., Krishna, R., Li, B., Qian, G.: A Chemically stable hofmann-type metal− organic framework with sandwich-like binding sites for benchmark acetylene capture. Adv. Mater. 32(24), 1908275 (2020). https://doi.org/10.1002/adma.201908275

    Article  Google Scholar 

  124. Zhang, Z., Peh, S.B., Krishna, R., Kang, C.H., Chai, K., Wang, Y., Shi, D., Zhao, D.: Optimal pore chemistry in an Ultramicroporous metal-organic framework for benchmark inverse CO2/C2H2 Separation. Angew. Chem. Int. Ed. 60(31), 17198–17204 (2021). https://doi.org/10.1002/anie.202106769

    Article  Google Scholar 

  125. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37e8 (1972). https://doi.org/10.1038/238037a0

  126. Guo, H., Lan, C., Zhou, Z., Sun, P., Wei, D., Li, C.: Molecular level distribution of black phosphorus quantum dots on nitrogen-doped graphene nanosheets for superior lithium storage. Small 12, 3748 (2016). https://doi.org/10.1016/j.nanoen.2016.10.019

    Article  Google Scholar 

  127. Xu, H.Q., Hu, J., Wang, D., Zhaohui, L., Qun, Z., Yi, L., Yu, S.H., Jiang, H.J.: Visible- light photoreduction of CO2 in a metaleorganic framework: boosting electrone hole separation via electron trap states. Am. Chem. Soc. 137, 13440e3 (2015). https://doi.org/10.1021/jacs.5b08773

  128. Wang, D.K., Huang, R., Liu, W., Sun, D., Li, Z.: Fe-Based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254e60 (2014). https://doi.org/10.1021/cs501169t

  129. Cardoso, J.C., Stulp, S., de Brito, J.F., Flor, J.B.S., Frem, R.C.G., Zanoni, M.V.B.: MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B 225, 563e73 (2018). https://doi.org/10.1016/j.apcatb.2017.12.013

  130. Ojha, N., Kumar, S.: Tri-phase photocatalysis for CO2 reduction and N2 fixation with efficient electron transfer on a hydrophilic surface of transition-metal-doped MIL-88A (Fe). Appl. Catal. B 292, 120166 (2021). https://doi.org/10.1016/j.apcatb.2021.120166

    Article  Google Scholar 

  131. Tang, Z., Zhu, F., Zhou, J., Chen, W., Wang, K.E., Liu, M., Wang, N., Li, N.: Monolithic NF@ ZnO/Au@ ZIF-8 photocatalyst with strong photo-thermal-magnetic coupling and selective-breathing effects for boosted conversion of CO2 to CH4. Appl. Catalysis B: Environ. 309, 121267 (2022).‏ https://doi.org/10.1016/j.apcatb.2022.121267

  132. Wang, G., He, C.T., Huang, R., Mao, J., Wang, D., Li, Y.: Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 142(45), 19339–19345 (2020). https://doi.org/10.1021/jacs.0c09599

    Article  Google Scholar 

  133. Chen, X., Li, Q., Li, J., Chen, J., Jia, H.: Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B 270, 118915 (2020). https://doi.org/10.1016/j.apcatb.2020.118915

    Article  Google Scholar 

  134. Ma, Y., Tang, Q., Sun, W.Y., Yao, Z.Y., Zhu, W., Li, T., Wang, J.: Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration. Appl. Catal. B 270, 118856 (2020). https://doi.org/10.1016/j.apcatb.2020.118856

    Article  Google Scholar 

  135. Wang, X., Wang, Y., Chai, G., Yang, G., Wang, C., Yan, W.: Poly (triphenylamine)-decorated UIO-66-NH2 mesoporous architectures with enhanced photocatalytic activity for CO2 reduction and H2 evolution. J. CO2 Utilization 51,101654 (2021).‏ https://doi.org/10.1016/j.jcou.2021.101654

  136. Wan, S., Ou, M., Zhong, Q., Wang, X.: Perovskite-type CsPbBr 3 quantum dots/UiO-66 (NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 358, 1287–1295 (2019). https://doi.org/10.1016/j.cej.2018.10.120

    Article  Google Scholar 

  137. Dong, Y.J., Jiang, Y., Liao, J.F., Chen, H.Y., Kuang, D.B., Su, C.Y.: Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Science China Mater., 1–10 (2022).‏ https://doi.org/10.1007/s40843-021-1962-9

  138. Wang, L., Zhang, Z., Han, Q., Liu, Y., Zhong, J., Chen, J., Huang, J., She, H., Wang, Q.: Preparation of CdS-P25/ZIF-67 composite material and its photocatalytic CO2 reduction performance. Appl. Surf. Sci. 584, 152645 (2022). https://doi.org/10.1016/j.apsusc.2022.152645

    Article  Google Scholar 

  139. Li, X., He, W., Li, C.H., Song, B.O., Liu, S.H.: Synergetic surface modulation of ZnO/Pt@ ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization. Appl. Catal. B 287, 119934 (2021). https://doi.org/10.1016/j.apcatb.2021.119934

    Article  Google Scholar 

  140. Dhakshinamoorthy, A., Asiri, A.M., Garcia, H.: Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chem. Commun. 53, 10851–10869 (2017). https://doi.org/10.1039/C7CC05927B

    Article  Google Scholar 

  141. Yang, D., Chen, Y., Su, Z., Zhang, X., Zhang, W., Srinivas, K.: Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 428, 213619 (2021). https://doi.org/10.1016/j.ccr.2020.213619

    Article  Google Scholar 

  142. Ali, M., Pervaiz, E., Noor, T., Rabi, O., Zahra, R., Yang, M.: Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: A review. Int. J. Energy Res. 45, 1190–1226 (2020). https://doi.org/10.1002/er.5807

    Article  Google Scholar 

  143. Hunge, Y.M., Yadav, A.A., Mahadik, M.A., Bulakhe, R.N., Shim, J.J., Mathe, V.L., Bhosale, C.H.: Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt. Mater. 76, 260–270 (2018). https://doi.org/10.1016/j.optmat.2017.12.044

  144. Stavila, V., Talin, A.A., Allendorf, M.D.: MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43(16), 5994–6010 (2014). https://doi.org/10.1039/c4cs00096j

    Article  Google Scholar 

  145. Ma, L., Gao, J., Huang, C., Xu, X., Xu, L.U., Ding, R., Bao, H., Wang, Z., Xu, G., Li, Q., Deng, P., Ma, H.: UiO-66-NH-(AO) MOFs with a New Ligand BDC-NH-(CN) for efficient extraction of uranium from seawater. ACS Appl. Mater. Interfaces. 13(48), 57831–57840 (2021). https://doi.org/10.1021/acsami.1c18625

    Article  Google Scholar 

  146. Yuan, G., Yu, Y., Li, J., Jiang, D., Gu, J., Tang, Y.I., Qiu, H., **ong, W., Liu, N.: Facile fabrication of a noval melamine derivative-doped UiO-66 composite for enhanced Co (II) removal from aqueous solution. J. Mol. Liq. 328, 115484 (2021). https://doi.org/10.1016/j.molliq.2021.115484

    Article  Google Scholar 

  147. Huang, M., Lou, Z., Zhao, W., Lu, A., Hao, X., Wang, Y., Feng, X., Shan, W., **ong, Y.: Immersion grinding and in-situ polymerization synthesis of poly (ionic liquid) s incorporation into MOF composites as radioactive TcO4-scavenger. J. Hazard. Mater. 422, 126871 (2022). https://doi.org/10.1016/j.jhazmat.2021.126871

    Article  Google Scholar 

  148. Ahmadijokani, F., Tajahmadi, S., Bahi, A., Molavi, H., Rezakazemi, M., Ko, F., Aminabhavi, T.M., Arjmand, M.: Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere 264, 128466 (2021). https://doi.org/10.1016/j.chemosphere.2020.128466

    Article  Google Scholar 

  149. Zhong, X., Liu, Y., Liang, W., Zhu, Y., Hu, B.: Construction of core-shell MOFs@ COF hybrids as a platform for the removal of UO22+ and Eu3+ Ions from Solution. ACS Appl. Mater. Interfaces. 13(11), 13883–13895 (2021). https://doi.org/10.1021/acsami.1c03151

    Article  Google Scholar 

  150. Jia, W., Hu, X.: Metal selectivity and effects of co-existing ions on the removal of Cd, Cu, Ni, and Cr by ZIF-8-EGCG nanoparticles. J. Colloid Interface Sci. 589, 578–586 (2021). https://doi.org/10.1016/j.jcis.2021.01.021

    Article  Google Scholar 

  151. Chen, C., Liu, Q., Chen, W., Li, F., **ao, G., Chen, C., Li, R., Zhou, J.: A high absorbent PVDF composite membrane based on β-cyclodextrin and ZIF-8 for rapid removing of heavy metal ions. Separation and Purification Technology: 120993 (2022).‏ https://doi.org/10.1016/j.seppur.2022.120993

  152. Ahmad, K., Shah, H., Ashfaq, M., Shah, S.S.A., Hussain, E., Naseem, H.A., Parveen, S., Ayub, A.: Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food Chem. Toxicol. 149, 112008 (2021). https://doi.org/10.1016/j.fct.2021.112008

    Article  Google Scholar 

  153. Poudel, B.M., Awasthi, G.P., Kim, H.O.: Novel insight into the adsorption of Cr (VI) and Pb (II) ions by MOF derived Co-Al layered double hydroxide@ hematite nanorods on 3D porous carbon nanofiber network. Chem. Eng. J. 417, 129312 (2021). https://doi.org/10.1016/j.cej.2021.129312

    Article  Google Scholar 

  154. Omer, A.M., Abd El-Monaem, E.M., Abd El-Latif, M.M., El-Subruiti, G.M., Eltaweil, A.S.: Facile fabrication of novel magnetic ZIF-67 MOF@ aminated chitosan composite beads for the adsorptive removal of Cr (VI) from aqueous solutions. Carbohyd. Polym. 265, 118084 (2021). https://doi.org/10.1016/j.carbpol.2021.118084

    Article  Google Scholar 

  155. Wang, Y., Peh, S.B., Zhao, D.: Alternatives to cryogenic distillation: advanced porous materials in adsorptive light olefin/paraffin separations. Small 15, 1900058 (2019). https://doi.org/10.1002/smll.201900058

    Article  Google Scholar 

  156. Bari, M.A., Kindzierski, W.B.: (2018) Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment Environ. Pollut. 235, 602–614 (2018). https://doi.org/10.1016/j.envpol.2017.12.065

    Article  Google Scholar 

  157. Molla, M.A.I., Tateishi, I., Furukawa, M., Katsumata, H., Suzuki, T., Kaneco, S.: Photocatalytic Decolorization of dye with self-dye-sensitization under fluorescent light irradiation open. J. Inorg. Non- Met. Mater. 7, 1–7 (2017). https://doi.org/10.3390/chemengineering1020008

    Article  Google Scholar 

  158. Wu, Y., Li, X., Zhao, H., Yao, F., Cao, J., Chen, Z., Ma, F., Wang, D., Yang, Q.: 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. Chemosphere 287, 132061 (2022). https://doi.org/10.1016/j.chemosphere.2021.132061

    Article  Google Scholar 

  159. Salgaonkar, M., Nadar, S.S., Rathod, V.K.: Biomineralization of orange peel peroxidase within metal organic frameworks (OPP–MOFs) for dye degradation. J. Environ. Chem. Eng. 7(2), 102969 (2019). https://doi.org/10.1016/j.jece.2019.102969

    Article  Google Scholar 

  160. Hu, T., Deng, F., Feng, H., Zhang, J., Shao, B., Feng, C., Tang, W., Tang, L.: Fe/Co bimetallic nanoparticles embedded in MOF-derived nitrogen-doped porous carbon rods as efficient heterogeneous electro-Fenton catalysts for degradation of organic pollutants. Appl. Mater. Today 24, 101161 (2021). https://doi.org/10.1016/j.apmt.2021.101161

    Article  Google Scholar 

  161. Ren, W., Gao, J., Lei, C., **e, Y., Cai, Y., Ni, Q., Yao, J.: Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants. Chem. Eng. J. 349, 766–774 (2018). https://doi.org/10.1016/j.cej.2018.05.143

    Article  Google Scholar 

  162. Abazari, R., Morsali, A., Dubal, D.P.: An advanced composite with ultrafast photocatalytic performance for the degradation of antibiotics by natural sunlight without oxidizing the source over TMU-5@ Ni–Ti LDH: mechanistic insight and toxicity assessment. Inorganic Chem. Front. 7(12), 2287–2304 (2020). https://doi.org/10.1039/D0QI00050G

  163. Samy, M., Ibrahim, M.G., Fujii, M., Diab, K.E., ElKady, M., Alalm, M.G.: CNTs/MOF-808 painted plates for extended treatment of pharmaceutical and agrochemical wastewaters in a novel photocatalytic reactor. Chem. Eng. J. 406, 127152 (2021). https://doi.org/10.1016/j.cej.2020.127152

    Article  Google Scholar 

  164. Li, B., Li, Y., Ren, J., Dai, F., Zhang, Y., He, Y., Song, P., Wang, R.: Hydroxyapatite coated with co-based metal organic framework nanoparticles as heterojunctions for catalytic degradation of organics. ACS Appl. Nano Mater. 4(9), 9370–9381 (2021). https://doi.org/10.1021/acsanm.1c01839

    Article  Google Scholar 

  165. Bagherzadeh, S.B., Kazem Eini, M., Mahmoodi, N.M.: A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53 (Fe)/CoFe2O4: facile synthesis and kinetic investigations. J. Mol. Liq. 301, 112427 (2020). https://doi.org/10.1016/j.molliq.2019.112427

    Article  Google Scholar 

  166. Uthappa, U.T., Sriram, G., Arvind, O.R., Kumar, S., Jung, H.Y., Neelgund, G.M., Losic, D., Kurkuri, M.D.: Engineering MIL-100 (Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl. Surf. Sci. 528, 146974 (2020). https://doi.org/10.1016/j.apsusc.2020.146974

    Article  Google Scholar 

  167. Chandra, R., Mala.: Controlled synthesis of AgNPs@ ZIF-8 composite: efficient heterogeneous photocatalyst for degradation of methylene blue and congo red. J. Water Process. Eng. 36, 101266 (2020). https://doi.org/10.1016/j.jwpe.2020.101266

  168. Zhan, Y., Lan, J., Shang, J., Yang, L., Guan, X., Li, W., Chen, S., Qi, Y., Lin, S.: Durable ZIF-8/Ag/AgCl/TiO2 decorated PAN nanofibers with high visible light photocatalytic and antibacterial activities for degradation of dyes. J. Alloy. Compd. 822, 153579 (2020). https://doi.org/10.1016/j.jallcom.2019.153579

    Article  Google Scholar 

  169. Müller, K., Fink, K., Schöttner, L., Koenig, M., Heinke, L., Wöll, C.: Defects as color centers: the apparent color of metal-organic frameworks containing Cu2+-based paddle-wheel units ACS Appl. Mater. Interfaces 9, 37463 (2017). https://doi.org/10.1021/acsami.7b12045

    Article  Google Scholar 

  170. Qian, Q., Asinger, P.A., Lee, M.J., Han, G., Rodriguez, K.M., Lin, S., Benedetti, F.M., Wu, A.X., Chi, W.S., Smith, Z.P.: MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020). https://doi.org/10.1021/acs.chemrev.0c00119

  171. McKinlay, A.C., Morris, R.E., Horcajada, P., Férey, G., Gref, R., Couvreur, P., Serre, C.: BioMOFs: Metal−organic frameworks for biological and medical applications. Angew. Chem. Int. Ed. 49, 6260–6266 (2010). https://doi.org/10.1002/anie.201000048

    Article  Google Scholar 

  172. Yang, J., Yang, Y.W.: Metal−organic frameworks for biomedical applications. Small 16, 1906846 (2020). https://doi.org/10.1002/smll.201906846

    Article  Google Scholar 

  173. Kitagawa, S., Kitaura, R., Noro, S.I.: Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 43, 2334−2375 (2004). https://doi.org/10.1002/anie.200300610

  174. Zhu, X., Li, S., Shi, Y., Cai, N.: Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energy Combust. Sci. 75, 100784 (2019). https://doi.org/10.1016/j.pecs.2019.100784

    Article  Google Scholar 

  175. Barelli, L., Bidini, G., Gallorini, F., Servili, S.: Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33(4), 554–570 (2008). https://doi.org/10.1016/j.energy.2007.10.018

    Article  Google Scholar 

  176. Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R., Freeman, B.D.: Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18), 4729–4761 (2013). https://doi.org/10.1016/j.polymer.2013.05.075

    Article  Google Scholar 

  177. Worrell, E., Phylipsen, D., Einstein, D., Martin, N.: Energy use and energy intensity of the US chemical industry (No. LBNL-44314). Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) (2000). https://doi.org/10.2172/773773

  178. Sholl, D.S., Lively, R.P.: Seven chemical separations to change the world. Nature 532(7600), 435–437 (2016)

    Article  Google Scholar 

  179. Worrell, E., Carreon, J.R.: Energy demand for materials in an international context. Philos. Trans. Royal Soc. A Math., hil. Trans. R Soc. A 375(2095), 20160377 (2017). https://doi.org/10.1098/rsta.2016.0377

  180. Keskin, S., Sholl, D.S.: Screening metal−organic framework materials for membrane-based methane/carbon dioxide separations. J. Phys. Chem. C 111(38), 14055–14059 (2007). https://doi.org/10.1021/jp075290l

    Article  Google Scholar 

  181. Arnold, M., Kortunov, P., Jones, D.J., Nedellec, Y., Kärger, J., Caro, J.: Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate. Eur. J. Inorg. Chem 2007, 60 (2007). https://doi.org/10.1002/ejic.200600698

    Article  Google Scholar 

  182. Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J.: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131(44), 16000–16001 (2009). https://doi.org/10.1021/ja907359t

    Article  Google Scholar 

  183. Marti, A.M., Venna, S.R., Roth, E.A., Culp, J.T., Hopkinson, D.P.: Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation. ACS Appl. Mater Interfaces 10(29), 24784–24790 (2018). https://doi.org/10.1021/acsami.8b06592

    Article  Google Scholar 

  184. Bennett, T.D., Tan, J.C., Yue, Y., Baxter, E., Ducati, C., Terrill, N.J., … Greaves, G.N.: Hybrid glasses from strong and fragile metal-organic framework liquids. Nat. Commun. 6(1), 1–7 (2015). https://doi.org/10.1038/ncomms9079

  185. Bennett, T.D., Yue, Y., Li, P., Qiao, A., Tao, H., Greaves, N.G., ... Keen, D.A.: Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138(10), 3484–3492 (2016). https://doi.org/10.1021/jacs.5b13220

  186. Ka, G.R.P.P.B., Chapman, K.W., Keen, D.A., Bennett, T.D., Coudert, F.-X.: Nat. Mater 16, 1149–1154 (2017)

    Google Scholar 

  187. Pisklak, T.J., Macías, M., Coutinho, D.H., Huang, R.S., Balkus, K.J.: Hybrid materials for immobilization of MP-11 catalyst. Top. Catal. 38(4), 269–278 (2006). https://doi.org/10.1007/s11244-006-0025-6

    Article  Google Scholar 

  188. Chen, Y., Lykourinou, V., Vetromile, C., Hoang, T., Ming, L.J., Larsen, R.W., Ma, S.: How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 134(32), 13188–13191 (2012). https://doi.org/10.1021/ja305144x

  189. Hou, C., Wang, Y., Ding, Q., Jiang, L., Li, M., Zhu, W., ... Liu, M.: Facile synthesis of enzyme-embedded magnetic metal–organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7(44), 18770–18779 (2015). https://doi.org/10.1039/C5NR04994F

  190. Wang, S., McGuirk, C.M., Ross, M.B., Wang, S., Chen, P., **ng, H., ... Mirkin, C.A.: General and direct method for preparing oligonucleotide-functionalized metal–organic framework nanoparticles. J. Am. Chem. Soc. 139(29), 9827–9830 (2017). https://doi.org/10.1021/jacs.7b05633

  191. An, J., Geib, S.J., Rosi, N.L.: Cation-triggered drug release from a porous zinc−adeninate metal−organic framework. J. Am. Chem. Soc. 131, 8376–8377 (2009). https://doi.org/10.1021/ja902972w

  192. Rejman, J., Oberle, V., Zuhorn, I.S., Hoekstra, D.: Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochem. J. 377(1), 159–169 (2004). https://doi.org/10.1042/bj20031253

    Article  Google Scholar 

  193. McMahon, H T., Boucrot, E.: Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol1. 2(8), 517–533 (2011). https://doi.org/10.1038/nrm3151

  194. Horcajada, P., Gref, R., Baati, T., Allan, P.K., Maurin, G., Couvreur, P., ... Serre, C.: Metal–organic frameworks in biomedicine. Chem. Rev. 112(2), 1232–1268 (2012). https://doi.org/10.1021/cr200256v

  195. Han, W., Wu, Z., Li, Wang, Y.: Graphene family nanomaterials (GFNs)—promising materials for antimicrobial coating and film: a review. Chem. Eng. J. 358, 1022–1037 (2019).https://doi.org/10.1016/j.cej.2018.10.106

  196. Dong, Y., Wu, X., Chen, X., Zhou, P., Xu, F., Liang, W.: Nanotechnology sha** stem cell therapy: recent advances, application, challenges, and future outlook. Biomed. Pharmacother. 137, 111236 (2021). https://doi.org/10.1016/j.biopha.2021.111236

    Article  Google Scholar 

  197. Winkler, T., Sass, F.A., Duda, G.N., Schmidt-Bleek, K.: A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone J. Res. 7(3), 232 e 243 (2018). https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1

  198. Dan, W., Dai, J.: Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 187, 111980 (2020). https://doi.org/10.1016/j.ejmech.2019.111980

    Article  Google Scholar 

  199. Baht, G.S., Vi, L., Alman, B.A.: The role of the immune cells in fracture healing. Curr. Osteoporos Rep. 16(2), 138 e 145 (2018). https://doi.org/10.1007/s11914-018-0423-2

  200. **a, Y., Fan, X., Yang, H., Li, L., He, C., Cheng, C., Haag, R.: ZnO/Nanocarbons-modified fibrous scaffolds for stem cell-based osteogenic differentiation. Small 16(38), 2003010 (2020). https://doi.org/10.1002/smll.202003010

    Article  Google Scholar 

  201. Sivaranjani, V., Philominathan, P.J.W.M.: Synthesize of Titanium dioxide nanoparticles using Moringa oleifera leaves and evaluation of wound healing activity. Wound Med 12, 1–5 (2016). https://doi.org/10.1016/j.wndm.2015.11.002

    Article  Google Scholar 

  202. Ash, C., Stone, R.J.S.: A question of dose: introduction. (Metals: impacts on health and the environment: special section). Science 300(5621), 925e926 (2003)

    Google Scholar 

  203. Veith, A.P., Henderson, K., Spencer, A., Sligar, A.D., Baker, A.B.: Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 146, 97–125 (2019). https://doi.org/10.1016/j.addr.2018.09.010

  204. **ao, J., Zhu, Y., Huddleston, S., Li, P., **ao, B., Farha, O.K., Ameer, G.A.: Copper metaleorganic framework nanoparticles stabilized with folic acid improve wound healing in diabetes. ACS Nano 12(2), 1023e1032 (2018). https://doi.org/10.1021/acsnano.7b01850

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mehdi Salehi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salehi, M.M., Esmailzadeh, F., Hassanzadeh-Afruzi, F. (2023). Applications of MOFs. In: Maleki, A., Taheri-Ledari, R. (eds) Physicochemical Aspects of Metal-Organic Frameworks. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-18675-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18675-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18674-5

  • Online ISBN: 978-3-031-18675-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation