Dielectric and Photoluminescent Properties of the Water–Cellulose–NaCl Systems in a Wide Range of Temperatures: What is the Role of Ions?

  • Conference paper
  • First Online:
Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications

Abstract

We have conducted a study of electric and spectral properties of the water–nanocellulose and water–nanocellulose–NaCl systems with different content of nanocellulose using dielectric and optical spectroscopy methods. We have demonstrated that the systems in which the content of nanocellulose was 0.08, 0.15, 0.3 and 0.6% undergo dielectric relaxation in the temperature range from –100 to 0 °C, whose nature is different from that of the pure water and explained by the dipole thermal polarization. The relaxation processes in both the water–nanocellulose and water–nanocellulose–NaCl systems were found to be due to the interaction between the surface layers of the cellulose nanocrystals and a hydration shell. The ions of Na+ and Cl were found to distribute along the nanocellulose–ice interface and to partially block the formation of the hydrations shell around the nanocrystals of nanocellulose. Consequently, these ions were found to reduce the intensity of the dielectric relaxation process in the surface shells of the nanocellulose surrounded by a hydration shell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3–4):491

    Article  Google Scholar 

  2. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640

    Article  Google Scholar 

  3. Demchenko V, Shtompel V, Riabov S, Lysenkov E (2015) Constant electric and magnetic fields effect on the structuring and thermomechanical and thermophysical properties of nanocomposites formed from pectin–Cu2+–polyethyleneimine interpolyelectrolyte–metal complexes. Nanoscale Res Lett 10(1):1

    Article  Google Scholar 

  4. Lysenkov EA, Klepko VV, Yakovlev YV (2016) Specifics of percolation behavior in the polyether–carbon nanotube systems doped with LiClO4. Surf Eng Appl Electrochem 52(2):186

    Article  Google Scholar 

  5. Fialko N, Dinzhos R, Sherenkovskii J, Meranova N, Navrodska R, Koseva N, Korzhyk V, Izvorska D, Lazarenko M (2021) Establishing patterns in the effect of temperature regime when manufacturing nanocomposites on their heat-conducting properties. EEJET 4(5):112

    Google Scholar 

  6. Kim JH, Shim BS, Kim HS, Lee YJ, Min SK, Jang D, Abas Z, Kim J (2015) Review of nanocellulose for sustainable future materials. IJPEM—GT 2(2):197

    Google Scholar 

  7. Saurabh CK, Adnan AS, Fazita MN, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216

    Article  Google Scholar 

  8. Rebouillat S, Pla F (2013) State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. JBNB 4(02):165

    Article  Google Scholar 

  9. Marinho NP, de Cademartori PHG, Nisgoski S, de Andrade Tanobe VO, Klock U, de Muñiz GIB (2020) Feasibility of ramie fibers as raw material for the isolation of nanofibrillated cellulose. Carbohydr Polym 230:115579

    Google Scholar 

  10. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941

    Article  Google Scholar 

  11. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368

    Article  Google Scholar 

  12. Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28(6):475

    Article  Google Scholar 

  13. Zinge C, Kandasubramanian B (2020) Nanocellulose based biodegradable polymers. Eur Polym J 133:109758

    Article  Google Scholar 

  14. Zabashta U, Lazarenko M, Alekseev A, Tkachev S, Vasylyuk S, Kovalchuk V, Bulavin L (2021) Mechanism of disorder genesis in cellulose microfibrils. Cellul Chem Technol 55(3–4):223–230

    Article  Google Scholar 

  15. Voisin H, Bergström L, Liu P, Mathew AP (2017) Nanocellulose-based materials for water purification. Nanomaterials 7(3):57

    Google Scholar 

  16. Tao J, Jiao L, Deng Y (2021) Cellulose-and nanocellulose-based dielectric materials. In: nanocellulose based composites for electronics, Elsevier, pp 73–100

    Google Scholar 

  17. Nizam PA, Gopakumar DA, Pottathara YB, Pasquini D, Nzihou A, Thomas S (2021) Nanocellulose-based composites: fundamentals and applications in electronics. Elsevier, In nanocellulose based composites for electronics, pp 15–29

    Book  Google Scholar 

  18. Wadher KJ, Bajaj GS, Trivedi RV, Trivedi SS (2021) Investigation of the influence of cellulose polymer on solid phase transformation of carbamazepine. J Cryst Growth 575:126358

    Article  Google Scholar 

  19. Plackett D, Letchford K, Jackson J, Burt H (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Paper Res J 29(1):105

    Google Scholar 

  20. Negi H, Sharma S, Singh RK (2021) Assessment of cellulose substituted with varying short/long, linear/branched alkyl groups for inhibition of wax crystals growth in crude oil. J Ind Eng Chem 104:458

    Article  Google Scholar 

  21. Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R (2016) Vegetable nanocellulose in food science: a review. Food Hydrocoll 57:178

    Google Scholar 

  22. Gorade VG, Chaudhary BU, Kale RD (2021) Moisture management of polypropylene non-woven fabric using microcrystalline cellulose through surface modification. Appl Surf Sci Adv 6:100151

    Article  Google Scholar 

  23. Hoeng F, Denneulin A, Bras J (2016) Use of nanocellulose in printed electronics: a review. Nanoscale 8(27):13131

    Article  ADS  Google Scholar 

  24. Du X, Zhang Z, Liu W, Deng Y (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices-a review. Nano Energy 35:299

    Article  Google Scholar 

  25. Chornii V, Nedilko SG, Alekseev A, Terebilenko K, Boyko V, Lazarenko M, Revo S, Scherbatskyi V, Teselko P (2020) Properties of the micro/nanocrystalline cellulose filled with ZrO2: Eu, F particles. In: 2020 IEEE 40th international conference on electronics and nanotechnology ELNANO 2020. Proceedings, pp 297–301

    Google Scholar 

  26. Zhao H, Chen Z, Du X, Chen L (2019) Contribution of different state of adsorbed water to the sub-Tg dynamics of cellulose. Carbohydr polym 210:322

    Article  Google Scholar 

  27. Due France KJ, Hoare T Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29(11):4609

    Google Scholar 

  28. Alekseev O, Zabashta Y, Kovalchuk V, Lazarenko M, Bulavin L (2019) The structure of polymer clusters in aqueous solutions of hydroxypropyl cellulose. Ukr J Phys 64(3):238

    Article  Google Scholar 

  29. Alekseev OM, Zabashta YF, Kovalchuk VI, Lazarenko MM, Rudnikov EG, Bulavin LA (2020) Structural transition in dilute solutions of rod-like macromolecules. Ukr J Phys 65(1):50

    Article  Google Scholar 

  30. Kedzior SA, Gabriel VA, Dubé MA, Cranston ED (2020) Nanocellulose in emulsions and heterogeneous water-based polymer systems: a review. Adv Mater 33(28):2002404

    Article  Google Scholar 

  31. Lazarenko MM, Nedilko SG, Alekseev SA, Tkachov SY, Shevtsov DO, Scherbatskyi VP, Barbash VA, Yablochkova KS, Ushcats MV, Kovalchuk VI, Andrusenko DA, Izvorska D, Dinzhos RV, Alekseev OM (2021) Electric and spectral properties of solid water-nanocellulose systems in a wide range of temperatures. International conference on nanotechnology and nanomaterials. Springer, Cham, pp 51–73

    Google Scholar 

  32. , Khouaja A, Koubaa A (2021) Daly HB Dielectric properties and thermal stability of cellulose high-density polyethylene bio-based composites. Ind Crops Prod 171:113928

    Google Scholar 

  33. Le Bras D, Strømme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119(18):5911

    Article  Google Scholar 

  34. Zhou Y, Huang X, Huang J, Zhang L, Zhou Z (2018) Predicting the dielectric properties of nanocellulose-modified presspaper based on the multivariate analysis method. Molecules 23(7):1507

    Article  Google Scholar 

  35. Jose J, Thomas V, John J, Mathew RM, Salam JA, Jose G, Abraham R (2021) Effect of temperature and frequency on the dielectric properties of cellulose nanofibers from cotton. J Mater Sci Mater Electron 32(16):21213

    Article  Google Scholar 

  36. Kovalov KM, Alekseev OM, Lazarenko MM, Zabashta YF, Grabovskii YE, Tkachov SY (2017) Influence of water on the structure and dielectric properties of the microcrystalline and nano-cellulose. Nanoscale Res Lett 12(1):468

    Article  ADS  Google Scholar 

  37. Alekseev OM, Kovalov KM, Lazarenko MM, Lazarenko MV, Grabovskii YE, Tkachov SY (2019) Cell Chem Technol 53(1–2):15

    Article  Google Scholar 

  38. Lazarenko M, Alekseev A, Zabashta Y, Tkachev S, Kovalchuk V, Andrusenko D,.Grabovsky Y, Bulavin L (2020) Estimation of water content in cellulose materials Cell Chem Technol 54(3−4):199

    Google Scholar 

  39. Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632

    Article  ADS  Google Scholar 

  40. Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269(2):433

    Article  Google Scholar 

  41. Kocherbitov V, Ulvenlund S, Kober M, Jarring K, Arnebrant T (2008) Hydration of microcrystalline cellulose and milled cellulose studied by sorption calorimetry. J Phys Chem B 112(12):3728

    Article  Google Scholar 

  42. Barbash VA, Yaschenko OV, Shniruk OM (2017) Preparation and properties of nanocellulose from organosolv straw pulp. Nanoscale Res Lett 12(1):241

    Article  ADS  Google Scholar 

  43. Barbash V, Yashchenko O, Kedrovska A (2017) Preparation and properties of nanocellulose from peracetic flax pulp. J Sci Res Rep 16(1):1

    Google Scholar 

  44. Barbash VA, Yashchenko OV, Opolsky VO (2018) Effect of hydrolysis conditions of organosolv pulp from kenaf fibers on the physicochemical properties of the obtained nanocellulose. Theor Exp Chem 54(3):193

    Article  Google Scholar 

  45. Alekseev AN, Lazarenko MM, Lazarenko MV, Kovalev KN, Tkachev SY (2017) Characterization of dielectric properties in liquid–solid phase transition. Inorg Mater 53(15):1473

    Article  Google Scholar 

  46. Lazarenko MM, Hnatiuk KI, Alekseev SA, Yablochkova KS, Dinzhos RV, Ublekov F, Lazarenko MV, Andrusenko DA, Alekseev AN (2020) Low-temperature dielectric relaxation in the system silica gel–undecylenic acid. In: 2020 IEEE 10th international conference nanomaterials: applications and properties, IEEE, 01NIC02–1

    Google Scholar 

  47. Hölzl C, Forbert H, Marx D (2021) Dielectric relaxation of water: assessing the impact of localized modes, translational diffusion, and collective dynamics. Phys Chem Chem Phys 23(37):20875

    Article  Google Scholar 

  48. Zarzycki P, Gilbert B (2020) Temperature-dependence of the dielectric relaxation of water using non-polarizable water models. Phys Chem Chem Phys 22(3):1011

    Article  Google Scholar 

  49. Popov I, Ishai PB, Khamzin A, Feldman Y (2016) The mechanism of the dielectric relaxation in water. Phys Chem Chem Phys 18(20):13941

    Article  Google Scholar 

  50. Nandi N, Bagchi B (1997) Dielectric relaxation of biological water. J Phys Chem B 101(50):10954

    Article  Google Scholar 

  51. Yang W, Jiao L, Liu W, Dai H (2019) Manufacture of highly transparent and hazy cellulose nanofibril films via coating TEMPO-oxidized wood fibers. Nanomaterials 9(1):107

    Article  Google Scholar 

  52. Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595

    Article  Google Scholar 

  53. Simão CD, Reparaz JS, Wagner MR, Graczykowski B, Kreuzer M, Ruiz-Blanco YB, García Y, Malho JM, Goñi AR, Ahopeltoc J, Sotomayor Torre CM (2015) Optical and mechanical properties of nanofibrillated cellulose: towards a robust platform for nextgeneration green technologies. Carbohydr Polym 126:40

    Article  Google Scholar 

  54. Pikulev V, Loginova S, Gurtov V (2012) Luminescence properties of silicon-cellulose nanocomposites. Nanoscale Res Lett 7:426

    Article  ADS  Google Scholar 

  55. Nedielko M, Hamamda S, Alekseev O, Chornii V, Dashevskii M, Lazarenko M, Scherbatskyi V (2017) Mechanical, dielectric, and spectroscopic characteristics of “micro/nanocellulose+ oxide” composites. Nanoscale Res Lett 12(1):98

    Article  ADS  Google Scholar 

  56. Grönroos P, Bessonoff M, Salminen K, Paltakari J, Kulmala S (2018) Phosphorescence and fluorescence of fibrillar cellulose films. Nord Pulp Paper Res J 33:246

    Article  Google Scholar 

  57. Ding Q, Zhang P (2021) Revealing the autofluorescence properties of nanocellulose isolated from different raw materials by different methods. In IOP Conf Ser: Earth Environ Sci 639(1):012037

    Google Scholar 

  58. Adachi C, Tsutsui T (2006) Fundamentals of luminescence: luminescence of organic compounds. Applied Chemistry. CRC Press, pp 51–59

    Google Scholar 

  59. Lazarenko MM, Alekseev AN, Alekseev SA, Yablochkova KS, Bokhvan SI, Demidiuk OF, Lazarenko MV (2020) Topological solitons in aliphatic systems with a restricted translational mobility. Chem Phys 539:110959

    Article  Google Scholar 

  60. Lazarenko MM, Alekseev AN, Alekseev SA, Hnatiuk KI, Demidiuk OF, Yablochkova KS, Atamas NO, Lazarenko MV (2020) Topological solitons in chain molecular crystals with stoichiometric obstacles and hydrogen bonds. J Phys Chem Solids 144:109514

    Article  Google Scholar 

  61. Tkachev SY, Alekseev OM, Lazarenko MM, Lazarenko MV, Kovalov KM, Bokhvan SI, Grabovskii YE, Hoshylyk NV (2018) Topological solitons in branched aliphatic molecules. Mol Cryst Liq Cryst 665(1):166

    Article  Google Scholar 

  62. Hoffman JD, Williams G, Passaglia E (1966) Analysis of the α, β, and γ relaxations in polychlorotrifluoroethylene and polyethylene: Dielectric and mechanical properties. J Polym Sci C (14)1:173

    Google Scholar 

  63. Fröhlich H (1958) Theory of dielectrics: dielectric constant and dielectric loss. Clarendon Press, pp 192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Lazarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazarenko, M.M. et al. (2023). Dielectric and Photoluminescent Properties of the Water–Cellulose–NaCl Systems in a Wide Range of Temperatures: What is the Role of Ions?. In: Fesenko, O., Yatsenko, L. (eds) Nanooptics and Photonics, Nanochemistry and Nanobiotechnology, and Their Applications . Springer Proceedings in Physics, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-031-18104-7_29

Download citation

Publish with us

Policies and ethics

Navigation