Log in

Interactions between cellulose nanocrystals and anionic and neutral polymers in aqueous solutions

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akira K, Sei H (1976) Ordered structure in weakly flocculated monodisperse latex. J Colloid Interface Sci 55:487–498

    Article  Google Scholar 

  • Asakura S, Oosawa F (1954) On interaction between two bodies immersed in a solution of macromolecule. J Chem Phys 22:1255–1256

    Article  CAS  Google Scholar 

  • Asakura S, Oosawa F (1958) Interaction between particles suspended in solutions of macromolecules. J Polym Sci Part A Polym Chem 33:183–192

    CAS  Google Scholar 

  • Beck-Candanedo S, Gray DG (2006) Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans. Langmuir 22:8690–8695

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  Google Scholar 

  • Beck-Candanedo S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494

    Article  Google Scholar 

  • Beek GP, Cohen Stuart MA, Cosgrove T (1991) Polymer adsorption and desorption studies via 1H NMR relaxation of solvent. Langmuir 7:327–334

    Article  Google Scholar 

  • Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286:1173–1180

    Article  CAS  Google Scholar 

  • Boluk Y, Danumah C (2014) Analysis of cellulose nanocrystal rod lengths by dynamic light scattering and electron microscopy. J Nanopart Res 16:1–7. doi:10.1007/s11051-013-2174-4

    Article  Google Scholar 

  • Boluk Y, Zhao L (2012) Aircraft anti-icing fluids formulated with nanocrystalline cellulose. US Patents US 13/380,085

  • Boluk Y, Zhao LY, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 24:6114–6123

    Article  Google Scholar 

  • Buining PA, Philipse AP, Lekkerkerker HNW (1994) Phase behavior of aqueous dispersions of colloidal boehmite rods. Langmuir 10:2106–2114

    Article  CAS  Google Scholar 

  • Buitenhuis J, Donselaar LN, Buining PA, Stroobants A, Lekkerkerker HNW (1995) Phase-separation of mixtures of colloidal boehmite rods and flexible polymer. J Colloid Interface Sci 175:46–56

    Article  CAS  Google Scholar 

  • Burns JL, Yan YD, Jameson GJ, Biggs S (2002) The effect of molecular weight of nonadsorbing polymer on the structure of depletion-induced flocs. J Colloid Interface Sci 247:24–32

    Article  CAS  Google Scholar 

  • Chatterjee A, Das B (2013) Radii of gyration of sodium carboxymethylcellulose in aqueous and mixed solvent media from viscosity measurement. Carbohydr Polym 98:1297–1303. doi:10.1016/j.carbpol.2013.08.019

    Article  CAS  Google Scholar 

  • Cooper CL, Cosgrove T, van Duijneveldt J, Murray M, Prescott SW (2013) The use of solvent relaxation NMR to study colloidal suspensions. Soft Matter 9:7211–7228

    Article  CAS  Google Scholar 

  • Cosgrove T, Griffiths PC (1992) Nuclear magnetic resonance studies of adsorbed polymer layers. Adv Colloid Interface Sci 42:175–204

    Article  CAS  Google Scholar 

  • Cosgrove T, Obey TM, Taylor M (1992) Solvent relaxation NMR: bound fraction determination for sodium poly(styrene sulphonate) at the solid/solution interface. Colloids Surf 64:311–316. doi:10.1016/0166-6622(92)80110-N

    Article  CAS  Google Scholar 

  • Daga VK, Wagner NJ (2006) Linear viscoelastic master curves of neat and laponite-filled poly(ethylene oxide)-water solutions. Rheol Acta 45:813–824

    Article  CAS  Google Scholar 

  • Davis VA, Parra-Vasquez A, Green MJ, Rai PK, Behabtu N, Prieto V, Booker RD, Schmidt J, Kesselman E, Zhou W, Fan H, Adams WW, Hauge RH, Fischer JE, Cohen Y, Talmon Y, Smalley RE, Pasquali M (2009) True solutions of single-walled carbon nanotubes for assembly into macroscopic materials. Nat Nanotechnol 4:830–834. doi:10.1038/nnano.2009.302

    Article  CAS  Google Scholar 

  • Devanand K, Selser J (1991) Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide. Macromolecules 24:5943–5947. doi:10.1021/ma00022a008

    Article  CAS  Google Scholar 

  • Dogic Z, Purdy K, Grelet E, Adams M, Fraden S (2004) Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer dextran. Phys Rev E 69:051702-1–051702-9. doi:10.1103/PhysRevE.69.051702

    Article  Google Scholar 

  • Dufresne A (2013) Research: nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227. doi:10.1016/j.mattod.2013.06.004

    Article  CAS  Google Scholar 

  • Edgar CD, Gray DG (2002) Influence of dextran on the phase Behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406. doi:10.1021/ma0204195

    Article  CAS  Google Scholar 

  • Fleer GJ, Stuart MAC, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman & Hall, Cambridge

    Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Hemraz UD, Lu A, Sunasee R, Boluk Y (2014) Structure of poly(N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions. J Colloid Interface Sci 430:157–165. doi:10.1016/j.jcis.2014.05.011

    Article  CAS  Google Scholar 

  • Hilhorst J, Meester V, Groeneveld E, Dhont JKG, Lekkerkerker HNW (2014) Structure and rheology of mixed suspensions of montmorillonite and silica nanoparticles. J Phys Chem B 118:11816–11825. doi:10.1021/jp504217m

    Article  CAS  Google Scholar 

  • Hu Z, Cranston ED, Ng R, Pelton R (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30:2684–2692. doi:10.1021/la404977t

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 80:1–12. doi:10.1038/am.2013.69

    Google Scholar 

  • Laurati M, Petekidis G, Koumakis N, Cardinaux F, Schofield AB, Brader JM, Fuchs M, Egelhaaf SU (2009) Structure, dynamics, and rheology of colloid-polymer mixtures: from liquids to gels. J Chem Phys 130:134907. doi:10.1063/1.3103889

    Article  CAS  Google Scholar 

  • Lekkerkerker HNW, Stroobants A (1994) Phase behaviour of rod-like colloid + flexible polymer mixtures. Il Nuovo Cimento D 16:949–962

    Article  Google Scholar 

  • Lekkerkerker HNW, Tuinier R (2011) Colloids and the depletion interaction. Springer, New York

    Book  Google Scholar 

  • Liimatainen H, Haavisto S, Haapala A, Niinimäki J (2009) Influence of adsorbed and dissolved carboxymethylcellulose on fibre suspension dispersing, dewaterability, and fines retention. BioResources 4:321–340

    CAS  Google Scholar 

  • Lu A, Boluk Y, Khalili Z, Hemraz U (2014a) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250. doi:10.1007/s10570-014-0173-y

    Article  CAS  Google Scholar 

  • Lu A, Song Y, Boluk Y (2014b) Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydr Polym 114:57–64. doi:10.1016/j.carbpol.2014.07.040

    Article  CAS  Google Scholar 

  • Lu A, Wang Y, Boluk Y (2014c) Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydr Polym 105:214–221. doi:10.1016/j.carbpol.2014.01.077

    Article  CAS  Google Scholar 

  • Malvern Instrument Manual (2004) Zetasizer nanoseries user manuals. Malvern Instruments Ltd, Worcestershire

    Google Scholar 

  • Mutch SA, Fujimoto BS, Kuyper CL, Kuo JS, Bajjalieh SM, Chiu DT (2007) Deconvolving single-molecule intensity distributions for quantitative microscopy measurements. Biophys J. doi:10.1529/biophysj.106.101428

    Google Scholar 

  • Nicharat A, Sapkota J, Weder C, Foster EJ (2015) Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites. J Appl Polym Sci 132:42752–42762. doi:10.1002/app.42752

    Article  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2016) The role of dilute and semi-dilute cellulose nanocrystal suspensions on the rheology of carboxymethl cellulose solutions. Can J Chem Eng 94:1841–1847

    Article  CAS  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Mol Interact 51:627–659

    CAS  Google Scholar 

  • Schonhoff M, Larsson A, Welzel PB, Kuckling D (2002) Thermoreversible polymers adsorbed to colloidal: a H NMR and DSC study of the phase transition in confined geometry. J Phys Chem 106:7800–7808

    Article  Google Scholar 

  • Sieglaff CL (1959) Phase separation in mixed polymer solutions. J Polym Sci 12:319–326

    Article  Google Scholar 

  • Strawhecker KE, Manias E (2003) Crystallization behavior of poly(ethylene oxide) in the presence of Na plus montmorillonite fillers. Chem Mater 15:844–849

    Article  CAS  Google Scholar 

  • Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules 19:2232–2238

    Article  CAS  Google Scholar 

  • Tuinier R, Fan T, Taniguchi T (2015) Depletion and the dynamics in colloid-polymer mixtures. Curr Opin Colloid Interface Sci. doi:10.1016/j.cocis.2014.11.009

    Google Scholar 

  • Vrij A (1976) Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl Chem 48:471–483

    Article  CAS  Google Scholar 

  • Walz JY, Sharma A (1994) Effect of long range interactions on the depletion force between colloidal particles. J Colloid Interface Sci 168:485

    Article  CAS  Google Scholar 

  • Wierenga AM, Philipse AP (1998) Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments. Colloids Surf Physicochem Eng Asp 137:355–372

    Article  CAS  Google Scholar 

  • Wierenga A, Philipse AP, Lekkerkerker HNW, Boger DV (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 14:55–65. doi:10.1021/la970376z

    Article  CAS  Google Scholar 

  • Wijmans CM, Zhulina EB, Fleer GJ (1994) Effect of free polymer on the structure of a polymer brush and interaction between two polymer brushes. Macromolecules 12:3238–3248. doi:10.1021/ma00090a017

    Article  Google Scholar 

  • Xue Min D, Tsunehisa K, Jean-Francois R, Derek G (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Article  Google Scholar 

  • Zaman AA, Bjelopavlic M, Moudgil BM (2000) Effect of adsorbed polyethylene oxide on the rheology of colloidal silica suspensions. J Colloid Interface Sci 226:290–298

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by Alberta Innovates BioSolutions. Authors thank Mr. Mark Miskolzie for 1H NMR relaxation measurements and National Institute for Nanotechnology for the supply of various equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaman Boluk.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguzlu, H., Boluk, Y. Interactions between cellulose nanocrystals and anionic and neutral polymers in aqueous solutions. Cellulose 24, 131–146 (2017). https://doi.org/10.1007/s10570-016-1096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-1096-6

Keywords

Navigation