Barometric Membrane Technologies for Plant Protein Purification

  • Chapter
  • First Online:
Green Protein Processing Technologies from Plants

Abstract

Proteins, hydrolysates and peptides from both animal and vegetable sources exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. Among the available technologies, membrane filtration is one of the most sustainable and cost-effective technique for the recovery and purification of protein-based compounds. This chapter provides a comprehensive overview on the use of barometric membrane processes, also in integrated systems, for the recovery of protein-based compounds from different sources (cereals, oilseeds, microalgae, soy, agro-food by-products, among others) highlighting typical advantages and limitations over competitive techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APC:

Allophycocyanin

CA :

Cellulose acetate

CPC:

C-phycocyanin

DF:

Diafiltration

EC:

Emulsifying capacity

MBR:

Membrane bioreactor

MF:

Microfiltration

MPH :

Mushroom protein hydrolysate

MWCO :

Molecular weight cut-off

NF:

Nanofiltration

PAN :

Polyacrylonitrile

PES :

Polyethersulphone

PP :

Polypropylene

PS :

Polysulphone

PTFE :

Polytetrafluoroethylene

PVDF :

Polyvinylidene fluoride

RC :

Regenerated cellulose

RO :

Reverse osmosis

SPC:

Soy protein concentrate

SPI:

Soy protein isolate

TMP :

Transmembrane pressure

UF :

Ultrafiltration

VCR:

Volume concentration ratio

VRF :

Volume reduction factor

References

  • Ali F, Ippersiel D, Lamarche F et al (2010) Characterization of low-phytate soy protein isolates produced by membrane technologies. Innov Food Sci Emerg Technol 11:162–168

    Article  Google Scholar 

  • Awosika TO, Aluko RE (2019a) Enzymatic pea protein hydrolysates are active trypsin and chymotrypsin inhibitors. Foods 8:200

    Article  Google Scholar 

  • Awosika TO, Aluko RE (2019b) Inhibition of the in vitro activities of α-amylase, α-glucosidase and pancreatic lipase by yellow field pea (Pisum Sativum L.) protein hydrolysates. Int J Food Sci Technol 54:2021–2034

    Article  Google Scholar 

  • Ba F, Ursu AV, Laroche C, Djelveh G (2016) Haematococcus pluvialis soluble proteins: extraction, characterization, concentration/fractionation and emulsifying properties. Bioresour Technol 200:147–152

    Article  Google Scholar 

  • Balti R, Zayoud N, Hubert F, Beaulieu L, Massé A (2021) Fractionation of Arthrospira platensis (Spirulina) water soluble proteins by membrane diafiltration. Sep Purif Technol 256:117756

    Article  Google Scholar 

  • Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A (2017) Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem 225:10–22

    Article  Google Scholar 

  • Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V (2014) Functional ingredients from microalgae. Food Funct 5(8):669–1685

    Article  Google Scholar 

  • Campbell KA, Glatz CE (2010) Protein recovery from enzyme-assisted aqueous extraction of soybean. Biotechnol Prog 26(2):488–495

    Google Scholar 

  • Cassini AS, Tessaro IC, Marczak LDF (2011) Ultrafiltration of wastewater from isolated soy protein production: fouling tendencies and mechanisms. Sep Sci Technol 46(7):1077–1086

    Article  Google Scholar 

  • Castro-Muñoz R, Barragán-Huerta BE, Fíla V, Denis PC, Ruby-Figueroa R (2018) Current role of membrane technology: from the treatment of agro-industrial by-products up to the valorization of valuable compounds. Waste Biomass Valorization 9:513–529

    Article  Google Scholar 

  • Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B (2011) Separation and purification of phycocyanin from spirulina sp using a membrane process. Bioresour Technol 102(14):7159–7164

    Article  Google Scholar 

  • Charcosset C (2012) Membrane processes in biotechnology and pharmaceutics. Elsevier, Amsterdam

    Google Scholar 

  • Cheng J, **e S, Wang S, Xue Y, Jiang L, Liu L (2017) Optimization of protein removal from soybean whey wastewater using chitosan ultrafiltration. J Food Process Eng 40(2):e12370

    Article  Google Scholar 

  • Cheung LM, Cheung PCK (2005) Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem 89(3):403–409

    Article  Google Scholar 

  • Deeslie WD, Cheryan M (1991) Fractionation of soy protein hydrolysates using ultrafiltration membranes. J Food Sci 57:411–413

    Article  Google Scholar 

  • Dhaliwal SK, Salaria P, Kaushik P (2021) Pea seed proteins: a nutritional and nutraceutical update. In: Jimenez-Lopez JC (ed) Grain and seed proteins functionality. IntechOpen, London, pp 105–120

    Google Scholar 

  • Eriksen NT (2008) Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 80:1–14

    Article  Google Scholar 

  • Essien SO, Young B, Baroutian S (2020) Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Technol 97:156–169

    Article  Google Scholar 

  • Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, Lamborghini M, Gruarin N, Roda A, Kraft A, Tassoni A (2017) Peptide fractions obtained from rice by-products by means of an environment-friendly process show in vitro health-related bioactivities. PLoS One 12:1–14

    Article  Google Scholar 

  • Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trend Food Sci Technol 26(2):68–87

    Article  Google Scholar 

  • Gao L, Nguyen KD, Utioh AC (2001) Pilot scale recovery of proteins from a pea whey discharge by ultrafiltration. LWT-Food Sci Technol 34:149–158

    Article  Google Scholar 

  • Grosshagauer S, Kraemer K, Somoza V (2020) The true value of spirulina. J Agric Food Chem 68(14):4109–4115

    Article  Google Scholar 

  • Hamada JS (2000) Ultrafiltration of partially hydrolyzed rice bran protein to recover value-added products. J Am Oil Chem Soc 77:779–784

    Article  Google Scholar 

  • Hérmia J (1982) Constant pressure blocking filtration laws. Applications to power-law non-Newtonian fluids. Trans IChemE 60:183–187

    Google Scholar 

  • Herrera A, Boussiba S, Napoleone V, Hohlberg A (1989) Recovery of c-phycocyanin from the cyanobacterium Spirulina maxima. J Appl Phycol 1:325–331

    Article  Google Scholar 

  • Ismail I, Kurnia KA, Samsuri S, Bilad MR, Marbelia L, Ismail NM, Khan AL, Budiman A, Susilawati S (2021) Energy efficient harvesting of spirulina sp. from the growth medium using a tilted panel membrane filtration. Bioresour Technol Rep 15:100697

    Article  Google Scholar 

  • Jaouen P, Lépine B, Rossignol N, Royer R, Quéméneur F (1999) Clarification and concentration with membrance technology of a phycocyanin solution extracted from Spirulina platensis. Biotechnol Tech 13:877–881

    Article  Google Scholar 

  • Jiang B, Wang J (2013) Method for extracting soy protein, oligosaccharide and isoflavone from soybean wastewater by one-step process. Chinese patent CN103265614-A

    Google Scholar 

  • Kanchanatip E, Su BR, Tulaphol S, Den W, Grisdanurak N, Kuo CC (2016) Fouling characterization and control for harvesting microalgae Arthrospira (Spirulina) maxima using a submerged, disc-type ultrafiltration membrane. Bioresour Technol 209:23–30

    Article  Google Scholar 

  • Kimatu BM, Zhao LY, Biao Y, Ma GX, Yang WJ, Pei F, Hu QH (2017) Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chem 230:58–67

    Article  Google Scholar 

  • Kulkarni S, Nikolov Z (2018) Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Res 35:185–193

    Article  Google Scholar 

  • Kumar NSK, Yea MK, Cheryan M (2003) Soy protein concentrates by ultrafiltration. J Food Sci 68:2278–2283

    Article  Google Scholar 

  • Kumar R, Liu D, Zhang L (2008) Advances in proteinous biomaterials. J Biobased Mater Bio 2(1):1–24

    Article  Google Scholar 

  • Labus K, Wiśniewski L, Cieńska M, Bryjak J (2020) Effectivity of tyrosinase purification by membrane techniques versus fractionation by salting out. Chem Pap 74(7):2267–2275

    Article  Google Scholar 

  • Leberknight J, Wielenga B, Lee-Jewett A, Menkhaus TJ (2011) Recovery of high value protein from a corn ethanol process by ultrafiltration and an exploration of the associated membrane fouling. J Membr Sci 366:405–412

    Article  Google Scholar 

  • Li J, Chase HA (2010) Applications of membrane technique for purification of natural products. Biotechnol Lett 32:601–608

    Article  Google Scholar 

  • Liu BL, Chai WS, Show PL, Chen JY, Chang YK (2020) Evaluation of dynamic binding performance of C-phycocyanin and allophycocyanin in Spirulina platensis algae by aminated polyacrylonitrile nanofiber membrane. Biochem Eng J 161:107686

    Article  Google Scholar 

  • Manak LJ, Lawhon JT, Lusas EW (1980) Functioning potential of soy, cottonseed, and peanut protein isolates produced by industrial membrane systems. J Food Sci 45:236–245

    Article  Google Scholar 

  • Matos J, Cardoso C, Bandarra NM, Afonso C (2017) Microalgae as a healthy ingredient for functional food: a review. Food Funct 8(8):2672–2685

    Article  Google Scholar 

  • Meneguetti BT, Machado LDS, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL (2017) Antimicrobial peptides from fruits and their potential use as biotechnological tools-a review and outlook. Front Microbiol 7:2136

    Article  Google Scholar 

  • Mession JL, Assifaoui A, Cayot P, Saurel R (2012) Effect of pea proteins extraction and vicilin/legumin fractionation on the phase behavior in admixture with alginate. Food Hydrocolloid 29:335–346

    Article  Google Scholar 

  • Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Bioresour Technol 100:5312–5317

    Article  Google Scholar 

  • Moure A, Dominguez H, Parajo JC (2005) Fractionation and enzymatic hydrolysis of soluble protein present in waste liquors from soy processing. J Agric Food Chem 53(19):7600–7608

    Article  Google Scholar 

  • Moure A, Dominguez H, Parajo JC (2006) Ultrafiltration of industrial waste liquors from the manufacture of soy protein concentrates. J Chem Technol Biotechnol 81(7):1252–1258

    Article  Google Scholar 

  • Moure A, Dominguez H, Parajo JC (2008) Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem 41(2):447–456

    Article  Google Scholar 

  • Nichols DJ, Cheryan M (1981) Production of soy isolates by ultrafiltration: factors affecting yield and composition. J Food Sci 46:367–372

    Article  Google Scholar 

  • Noordman TR, Kooiker K, Bel W, Dekker B, Wesselingh JA (2003) Concentration of aqueous extracts of defatted soy flour by ultrafiltration: effect of suspended particles on the filtration flux. J Food Eng 58(2):135–141

    Article  Google Scholar 

  • Oreopoulou V, Tzia C (2007) Utilization of plant by-products for the recovery of proteins, dietary fibers, antioxidants, and colorants. In: Oreopoulou V, Russ W (eds) Utilization of by-products and treatment of waste in the food industry, vol 3. Springer, New York, pp 209–232

    Chapter  Google Scholar 

  • Paul M, Jons SD (2016) Chemistry and fabrication of polymeric nanofiltration membranes: a review. Polymer 103:417–456

    Article  Google Scholar 

  • Pihlanto A, Akkanen S, Korhonen HJ (2008) ACE-inhibitory and antioxidant properties of potato (Solanum tuberosum). Food Chem 109(1):104–112

    Article  Google Scholar 

  • Plaza M, Turner C (2015) Pressurized hot water extraction of bioactives. Trends Anal Chem 71:39–54

    Article  Google Scholar 

  • Razavi SSK, Harris JL, Sherkat F (1996) Fouling and cleaning of membranes in the ultrafiltration of the aqueous extract of soy flour. J Membr Sci 114(1):93–104

    Article  Google Scholar 

  • Rito-Palomares M, Nuñez L, Amador D (2001) Practical application of aqueous two-phase systems for the development of a prototype process for cphycocyanin recovery from Spirulina maxima. J Chem Technol Biotechnol 76:1273–1280

    Article  Google Scholar 

  • Roblet C, Amiot J, Lavigne C, Marette A, Lessard M, Jean J, Ramassamy C, Moresoli C, Bazinet L (2012) Screening of in vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes. Food Res Int 46(1):237–249

    Article  Google Scholar 

  • Rosello-Soto E, Parniakov O, Deng Q, Patras A, Koubaa M, Grimi N, Boussetta N, Tiwari BK, Vorobiev E, Lebovka N, Barba FJ (2016) Application of non-conventional extraction methods: toward a sustainable and green production of valuable compounds from mushrooms. Food Eng Rev 8(2):214–234

    Article  Google Scholar 

  • Rossi N, Derouiniot-Chaplain M, Jaouen P, Legentilhomme P, Petit I (2008) Arthrospira platensis harvesting with membranes: fouling phenomenon with limiting and critical flux. Bioresour Technol 99:6162–6167

    Article  Google Scholar 

  • Rossi N, Jaouen P, Legentilhomme P, Petit I (2004) Harvesting of Cyanobacterium Arthrospira Platensis using organic filtration membranes. Food Bioprod Process 82(3):244–250

    Article  Google Scholar 

  • Safi C, Liu DZ, Yap BHJ, Martin GJO, Vaca-Garcia C, Pontalier PY (2014) A twostage ultrafiltration process for separating multiple components of Tetraselmis suecica after cell disruption. J Appl Phycol 26(6):2379–2387

    Article  Google Scholar 

  • Safi C, Olivieri G, Campos RP, Engelen-Smit N, Mulder WJ, Van den Broek LAM, Sijtsm L (2017) Biorefinery of microalgal soluble proteins by sequential processing and membrane filtration. Bioresour Technol 225:151–158

    Article  Google Scholar 

  • Schäfer AI, Fane AG, Waite TD (2000) Fouling effects on rejection in the membrane filtration of natural waters. Desalination 131:215–224

    Article  Google Scholar 

  • Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble proteins from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127

    Article  Google Scholar 

  • Shallo HE, Rao A, Ericson AP, Thomas RL (2001) Preparation of soy protein concentrate by ultrafiltration. J Food Sci 66(2):242–246

    Google Scholar 

  • Shih FF (2012) An update on the use of co-products from the milling of rice in value-added food products. J Am Oil Chem Soc 89(1):1–8

    Article  Google Scholar 

  • Singh N (2007) Process for producing a high solubility, low viscosity, isoflavone-enriched soy protein isolate and the products thereof. US patent 7,306,821 B2

    Google Scholar 

  • Skorepova J, Moresoli C (2007) Carbohydrate and mineral removal during the production of low-phytate soy protein isolate by combined electroacidification and high shear tangential flow ultrafiltration. J Agric Food Chem 55:5645–5652

    Article  Google Scholar 

  • Soto-Sierra L, Stoykova P, Nikolov ZL (2018) Extraction and fractionation of microalgae-based protein products. Algal Res 36:175–192

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Review commercial applications of microalgae. J Biosci Bioeng 101(2):87–201

    Article  Google Scholar 

  • Sumner AK, Nielsen MA, Youngs CG (1981) Production and evaluation of pea protein isolate. J Food Sci 46:364–366

    Article  Google Scholar 

  • Tang DS, Yin GM, He YZ, Hu SQ, Li B, Li L, Liang HL, Borthakur D (2009) Recovery of protein from brewer’s spent grain by ultrafiltration. Biochem Eng J 48:1–5

    Article  Google Scholar 

  • Tian H, Guo GP, Fu XW, Yao YY, Yuan L, **ang AM (2018) Fabrication, properties and applications of soy-protein-based materials: a review. Int J Biol Macromol 120:475–490

    Article  Google Scholar 

  • Ursu AV, Marcati A, Sayd T, Sante-Lhoutellier V, Djelveh G, Michaud P (2014) Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour Technol 157:134–139

    Article  Google Scholar 

  • Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22(1):46–56

    Article  Google Scholar 

  • Vo TS, Ryu B, Kim SK (2013) Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J Funct Foods 5(3):1336–1346

    Article  Google Scholar 

  • Vose JR (1980) Production and functionality of starches and protein isolates from legume seeds (field pea and horsebeans). Cereal Chem 57:406–410

    Google Scholar 

  • Wang JS, Zhao MM, Zhao QZ, Jiang YM (2007) Antioxidant properties of papain hydrolysates of wheat gluten in different oxidation systems. Food Chem 101(4):1658–1663

    Article  Google Scholar 

  • Wiege B, Lindhauer MG, Bergthaller W (1993) Semitechnical methods for the isolation of wrinkled pea protein. Starch-Starke 45:81–84

    Article  Google Scholar 

  • Wu YV (1987) Recovery of protein-rich by-products from sweet sorghum grain stillage after alcohol distillation. Cereal Chem 64:244–247

    Google Scholar 

  • **e Z, Huang J, Xu X, ** Z (2008) Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem 111(2):370–376

    Article  Google Scholar 

  • Yoshie-Stark Y, Wada Y, Wasche A (2008) Chemical composition, functional properties, and bioactivities of rapeseed protein isolates. Food Chem 107(1):32–39

    Article  Google Scholar 

  • Zaky A, Abd El-Aty AM, Ma AJ, Jia YM (2020) An overview on antioxidant peptides from rice bran proteins: extraction, identification, and applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1842324

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Cassano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 His Majesty the King in Right of Canada and The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cassano, A., Conidi, C. (2023). Barometric Membrane Technologies for Plant Protein Purification. In: Hernández-Álvarez, A.J., Mondor, M., Nosworthy, M.G. (eds) Green Protein Processing Technologies from Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-16968-7_3

Download citation

Publish with us

Policies and ethics

Navigation