Integument

  • Chapter
  • First Online:
In a Class of Their Own

Part of the book series: Fascinating Life Sciences ((FLS))

  • 731 Accesses

Abstract

The skin of birds keeps out pathogens and other potentially harmful substances, retains vital fluids and gases, serves as a sensory organ, and produces and supports feathers. This chapter describes the structure of avian skin and explains the functions of unfeathered areas of skin found in some species of birds, like vultures. Interspecific variation in the structure of avian claws and rhamphotheca and the factors that contribute to such variation are discussed. Next, the structure and function of specialized structures like wattles and combs are explained, as are the structure and function of integument glands. Next, the evolution of feathers is discussed, and the structure and function of the different types of feathers are described. Also described in detail is skin and feather color, including the role of pigments and structure. Colors produced by thin- and multi-film interference and photonic structures are also explained. The chapter closes with a discussion of feather parasites and the defenses used by birds to combat those parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abourachid A, Herrel A, Decamps T, Pages F, Fabre A-C, Van Hoorebeke L, Adriaens D, Amado MAG (2019) Hoatzin nestling locomotion: acquisition of quadrupedal limb coordination in birds. Sci Adv 5:eaat0787

    Article  PubMed  PubMed Central  Google Scholar 

  • Adkins-Regan E (1999) Foam produced by male Coturnix quail: what is its function? Auk 116:184–193

    Article  Google Scholar 

  • Alibardi L (2017) Review: cornification, morphogenesis and evolution of feathers. Protoplasma 254:1259–1281

    Article  PubMed  Google Scholar 

  • Alt G, Mägi M, Lodjak J, Mänd R (2020) Experimental study of the effect of preen oil against feather bacteria in passerine birds. Oecologia 192:723–733

    Article  PubMed  Google Scholar 

  • Altshuler DL, Bahlman JW, Dakin R, Gaede AH, Goller B, Lentink D, Segre PS, Skandalis DA (2015) The biophysics of bird flight: functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors. Can J Zool 93:961–975

    Article  Google Scholar 

  • Amo L, Avilés JM, Parejo D, Peña A, Rodríguez J, Tomás G (2012a) Sex recognition by odour and variation in the uropygial gland secretion in starlings. J Anim Ecol 81:603–613

    Article  Google Scholar 

  • Amo L, López-Rull I, Pagán I, Macías Garcia C (2012b) Male quality and conspecific scent preferences in the House Finch, Carpodacus mexicanus. Anim Behav 84:1483–1489

    Article  Google Scholar 

  • Badyaev AV, Landeen EA (2007) Developmental evolution of sexual ornamentation: model and a test of feather growth and pigmentation. Integr Comp Biol 47:221–233

    Article  PubMed  Google Scholar 

  • Bakken GS, Vanderbilt VC, Buttemer WA, Dawson WR (1978) Avian eggs: thermoregulatory value of very high near-infrared reflectance. Science 200:321–323

    Article  CAS  PubMed  Google Scholar 

  • Bakken GS, Banta MR, Higginbotham CM, Lynott AJ (2006) It’s just ducky to be clean: the water repellency and water penetration resistance of swimming Mallard Anas platyrhynchos ducklings. J Avian Biol 37:561–571

    Article  Google Scholar 

  • Bearhop S, Furness RW, Hilton GM, Votier SC, Waldron S (2003) A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Funct Ecol 17:270–275

    Article  Google Scholar 

  • Bennett T (1974) Peripheral and autonomic nervous systems. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 4. Academic Press, New York, pp 1–77

    Google Scholar 

  • Birn-Jeffery AV, Miller CE, Naish D, Rayfield EJ, Hone DWE (2012) Pedal claw curvature in birds, lizards and Mesozoic dinosaurs – complicated categories and compensating for mass-specific and phylogenetic control. PLoS ONE 7:e50555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson IA, Marra PP, Burtt EH Jr, Sikaroodi M, Gillevet PM (2007) A molecular comparison of plumage and soil bacteria across biogeographic, ecological, and taxonomic scales. Microb Ecol 54:65–81

    Article  PubMed  Google Scholar 

  • Blanco G, Hornero-Méndez D, Lambertucci SA, Bautista LM, Wiemeyer G, Sanchez-Zapata JA, Garrido-Fernández J, Hiraldo F, Donázar JA (2013) Need and seek for dietary micronutrients: endogenous regulation, external signalling and food sources of carotenoids in New World vultures. PLoS ONE 8:e65562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blount JD, McGraw KJ (2008) Signal functions of carotenoid colouration. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, volume 4: natural functions. Birkhäuser Verlag, Basel, pp 213–236

    Chapter  Google Scholar 

  • Bonadonna F, Cunningham GB, Jouventin P, Hesters F, Nevitt GA (2003) Evidence for nest-odour recognition in two species of diving petrel. J Exp Biol 206:3719–3722

    Article  PubMed  Google Scholar 

  • Bonadonna F, Villafane M, Bajzak C, Jouventin P (2004) Recognition of burrow’s olfactory signature in Blue Petrels, Halobaena caerulea: an efficient discrimination mechanism in the dark. Anim Behav 67:893–898

    Article  Google Scholar 

  • Bonser BHC (1996) Comparative mechanics of bill, claw and feather keratin in the Common Starling Sturnus vulgaris. J Avian Biol 27:175–177

    Article  Google Scholar 

  • Booth DT, Clayton DH, Block BA (1993) Experimental demonstration of the energetic cost of parasitism in free-ranging hosts. Proc R Soc B 253:125–129

    Article  Google Scholar 

  • Bormashenko E, Bormashenko Y, Stein T, Whyman G, Bormashenko E (2007) Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition. J Colloid Interface Sci 311:212–216

    Article  CAS  PubMed  Google Scholar 

  • Boulton R (1927) Ptilosis of the House Wren (Troglodytes aedon aedon). Auk 44:387–414

    Article  Google Scholar 

  • Bradbury JW, Vehrencamp S (1998) Principles of animal communication. Sinauer Associates, Sunderland

    Google Scholar 

  • Braun MS, Sporer F, Zimmermann S, Wink M (2018) Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase. FEMS Microbiol Ecol 94:fiy117

    Article  CAS  Google Scholar 

  • Brooks WS (1968) Comparative adaptations of the Alaskan redpolls to the Arctic environment. Wilson Bull 80:253–280

    Google Scholar 

  • Brown RE, Fedde MR (1993) Airflow sensors in the avian wing. J Exp Biol 179:13–30

    Article  Google Scholar 

  • Brown CR, Brown MB, Rannala B (1995) Ectoparasites reduce long-term survivorship of their avian hosts. Proc R Soc B 262:313–319

    Article  Google Scholar 

  • Buchanan KL, Evans MR, Goldsmith AR (2003) Testosterone, dominance signaling and immunosuppression in the House Sparrow, Passer domesticus. Behav Ecol Sociobiol 55:50–59

    Article  Google Scholar 

  • Buchholz R (1995) Female choice parasite load and male ornamentation in Wild Turkeys. Anim Behav 50:929–943

    Article  Google Scholar 

  • Burger BV, Reiter B, Borzyk O, Du Plessis MA (2004) Avian exocrine secretions. I. Chemical characterization of the volatile fraction of the uropygial secretion of the Green Woodhoopoe, Phoeniculus purpureus. J Chem Ecol 30:1603–1611

    Article  CAS  PubMed  Google Scholar 

  • Burtt EH, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116:364–372

    Article  Google Scholar 

  • Burtt EH Jr (1979) Tips on wings and other things. In: Burtt EH Jr (ed) The behavioral significance of color. Garland STPM Press, New York, pp 75–110

    Google Scholar 

  • Burtt EH Jr, Ichida JM (2004) Gloger’s Rule, feather-degrading bacteria, and color variation among Song Sparrows. Condor 106:681–686

    Article  Google Scholar 

  • Bush SE, Villa SM, Boves TJ, Brewer D, Belthoff JR (2012) Influence of bill and foot morphology on the ectoparasites of Barn Owls. J Parasitol 98:256–261

    Article  PubMed  Google Scholar 

  • Calcott B (2009) Lineage explanations: explaining how biological mechanisms change. Br J Philos Sci 60:51–78

    Article  Google Scholar 

  • Cameron GJ, Wess TJ, Bonser RHC (2003) Young’s modulus varies with differential orientation of keratin in feathers. J Struct Biol 2:118–123

    Article  Google Scholar 

  • Cantarero A, Andrade P, Carneiro M, Moreno-Borrallo A, Alonso-Alvarez C (2020) Testing the carotenoid-based sexual signalling mechanism by altering CYP2J19 gene expression and colour in a bird species. Proc R Soc B 287:20201067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casagrande S, Csermely D, Pini E, Bertacche V, Tagliavini J (2006) Skin carotenoid concentration correlates with male hunting skill and territory quality in the kestrel Falco tinnunculus. J Avian Biol 37:190–196

    Article  Google Scholar 

  • Caspers BA, Hagelin JC, Paul M, Bock S, Willeke S, Krause ET (2017) Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Sci Rep 7:12859

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  • Chan EP, Walish JJ, Urbas AM, Thomas EL (2013) Mechanochromic photonic gels. Adv Mater 25:3934–3947

    Article  CAS  PubMed  Google Scholar 

  • Chang WL, Wu H, Chiu YK, Wang S, Jiang TX, Luo ZL, Lin YC, Li A, Hsu JT, Huang HL, Gu HJ (2019) The making of a flight feather: bio-architectural principles and adaptation. Cell 179:1409–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Templin RJ (2004) Feathered coelurosaurs from China: new light on the arboreal origin of avian flight. In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds) Feathered dragons. Indiana University Press, Bloomington, pp 251–281

    Google Scholar 

  • Chatterjee S, Templin RJ (2007) Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui. Proc Natl Acad Sci USA 104:1576–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P-J, Dong Z-M, Zhen S-N (1998) An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152

    Google Scholar 

  • Cheng F, Gao J, Luk TS, Yang X (2015) Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci Rep 5:11045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiale MC, Montalti D (2013) The relationship between the feather tuft of the uropygial gland and terrestrial/aquatic birds. Revista Brasileira de Ornithologia 21:162–167

    Google Scholar 

  • Chiale MC, Carril J, Montalti D, Barbeito C (2019) The uropygial gland of the Eared Dove and its evolutionary history within the Columbiformes (Aves). J Ornithol 160:1171–1181

    Article  Google Scholar 

  • Chuong C-M, Chodankar R, Widelitz RB, Jiang T-X (2000) Evo-Devo of feathers and scales: building complex epithelial appendages. Curr Opin Genet Dev 10:449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark GA, de Cruz JB (1989) Functional interpretation of protruding filoplumes in oscines. Condor 91:962–965

    Article  Google Scholar 

  • Clarke J (2013) Feathers before flight. Science 340:690–692

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Middleton K (2006) Bird evolution. Curr Biol 16:R350–R354

    Article  CAS  PubMed  Google Scholar 

  • Clay T (1949) Some problems in the evolution of a group of ectoparasites. Evolution 3:279–299

    Article  CAS  PubMed  Google Scholar 

  • Clayton DH (1990) Mate choice in experimentally parasitized Rock Doves: lousy males lose. Am Zool 30:251–262

    Article  Google Scholar 

  • Clayton DH (1991) Coevolution of avian grooming and ectoparasite avoidance. In: Loye JE, Zuk M (eds) Bird-parasite interactions: ecology, evolution, and behaviour. Oxford University Press, Oxford, pp 258–289

    Chapter  Google Scholar 

  • Clayton DH, Cotgreave P (1994) Relationship of bill morphology to grooming behaviour in birds. Anim Behav 47:195–201

    Article  Google Scholar 

  • Clayton DH, Moore J (1997) Host–parasite evolution: general principles and avian models. Oxford University Press, Oxford

    Book  Google Scholar 

  • Clayton DH, Tompkins DM (1995) Comparative effects of mites and lice on the reproductive success of Rock Doves (Columba livia). Parasitology 110:195–206

    Article  PubMed  Google Scholar 

  • Clayton DH, Walther BA (2001) Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94:455–467

    Article  Google Scholar 

  • Clayton DH, Gregory RD, Price RD (1992) Comparative ecology of Neotropical bird lice (Insecta: Phthiraptera). J Anim Ecol 61:781–795

    Article  Google Scholar 

  • Clayton DH, Moyer BR, Bush SE, Jones TG, Gardiner DW, Rhodes BB, Goller F (2005) Adaptive significance of avian beak morphology for ectoparasite control. Proc R Soc B 272:811–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton DH, Koop JAH, Harbison CW, Moyer BR, Bush SE (2010) How birds combat ectoparasites. Open Ornithol J 3:41–71

    Article  Google Scholar 

  • Conover MR, Miller DE (1980) Rictal bristle function in Willow Flycatcher. Condor 82:469–471

    Article  Google Scholar 

  • Cooper RL, Lloyd VJ, Di-Poï N, Fletcher AG, Barrett PM, Fraser GJ (2019) Conserved gene signalling and a derived patterning mechanism underlie the development of avian footpad scales. EvoDevo 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotgreave P, Clayton DH (1994) Comparative analysis of the time spent grooming by birds in relation to parasite load. Behaviour 131:171–187

    Article  Google Scholar 

  • Couteaudier M, Denesvre C (2014) Marek’s disease virus and skin interactions. Vet Res 45:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Csermely D, Bertè L, Camoni R (1998) Prey killing by Eurasian Kestrels: the role of the foot and the significance of bill and talons. J Avian Biol 29:10–16

    Article  Google Scholar 

  • Cunningham SJ, Alley MR, Castro I (2011) Facial bristle feather histology and morphology in New Zealand birds: implications for function. J Morphol 272:118–128

    Article  PubMed  Google Scholar 

  • Cunningham SJ, Corfield JR, Iwaniuk AN, Castro I, Alley MR, Birkhead TR, Parsons S (2013) The anatomy of the bill tip of kiwi and associated somatosensory regions of the brain: comparisons with shorebirds. PLoS ONE 8:e80036

    Article  PubMed  PubMed Central  Google Scholar 

  • Czirják GÁ, Pap PL, Vágási CI, Giraudeau M, Mureşan C, Mirleau P, Heeb P (2013) Preen gland removal increases plumage bacterial load but not that of feather-degrading bacteria. Naturwissenschaften 100:145–151

    Article  PubMed  Google Scholar 

  • D’Alba L, Shawkey MD (2012) Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in Budgerigar (Melopsittacus undulatus) feathers. J Exp Biol 215:1272–1277

    Article  PubMed  Google Scholar 

  • Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M (2015) The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–370

    Article  CAS  PubMed  Google Scholar 

  • Davison GWH (1985) Avian spurs. J Zool 206:353–366

    Article  Google Scholar 

  • Delaunay MG, Brassey C, Larsen C, Lloyd H, Grant RA (2022) The evolutionary origin of avian facial bristles and the likely role of rictal bristles in feeding ecology. Sci Rep 12:21108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delhey K, Peters A, Kempenaers B (2007) Cosmetic coloration in birds: occurrence, function, and evolution. Am Nat 169(Suppl):S145–S158

    Article  PubMed  Google Scholar 

  • Delhey K, Peters A, Biedermann PHW, Kempenaers B (2008) Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds. Naturwissenschaften 95:939–946

    Article  CAS  PubMed  Google Scholar 

  • Dey CJ, Dale J, Quinn JS (2014) Manipulating the appearance of a badge of status causes changes in true badge expression. Proc R Soc B 281:20132680

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O (2019) Getting to the root of scales, feather and hair: as deep as odontodes? Exp Dermatol 28:503–508

    Article  PubMed  Google Scholar 

  • Dial KP (2003) Wing-assisted incline running and the evolution of flight. Science 299:402–404

    Article  CAS  PubMed  Google Scholar 

  • Doña J, Proctor H, Serrano D, Johnson KP, Oploo AOV, Huguet-Tapia JC, Ascunce MS, Jovani R (2019) Feather mites play a role in cleaning host feathers: new insights from DNA metabarcoding and microscopy. Mol Ecol 28:203–218

    Article  PubMed  Google Scholar 

  • Dorward P (1970) Response patterns of cutaneous mechanoreceptors in the domestic duck. Comp Biochem Physiol 35:729–735

    Article  Google Scholar 

  • Doucet SM, Shawkey MD, Hill GE, Montgomerie R (2006) Iridescent plumage in Satin Bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 209:380–390

    Article  PubMed  Google Scholar 

  • du Toit CJ, Chinsamy A, Cunningham SJ (2020) Cretaceous origins of the vibrotactile bill-tip organ in birds. Proc R Soc B 287:20202322

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumbacher JP (1999) Evolution of toxicity in Pitohuis. I. Effects of homobatrachotoxin on chewing lice (order Phthiraptera). Auk 116:957–963

    Article  Google Scholar 

  • Dyck J (1985) The evolution of feathers. Zoologica Scripta 14:137–153

    Article  Google Scholar 

  • Dyke G, De Kat R, Palmer C, Van Der Kindere J, Naish D, Ganapathisubramani B (2013) Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight. Nat Commun 4:2489

    Google Scholar 

  • Elder WH (1954) The oil gland of birds. Wilson Bull 66:6–31

    Google Scholar 

  • Elias PM, Menon GK (1991) Structural and biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26

    Article  CAS  PubMed  Google Scholar 

  • Eliason CM, Shawkey MD (2012) A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface 9:2279–2278

    Article  PubMed  PubMed Central  Google Scholar 

  • Emlen ST, Wrege PH (2004) Size dimorphism, intrasexual competition, and sexual selection in Wattled Jacana (Jacana jacana), a sex-role reversed shorebird in Panama. Auk 121:391–403

    Google Scholar 

  • Engelbrecht D (2010) Growth and development of Crested Barbet Trachyphonus vaillantii nestlings. Ornithol Obs 1:59–62

    Google Scholar 

  • Falk AR, Kaye TG, Zhou Z, Burnham DA (2016) Laser fluorescence illuminates the soft tissue and life habits of the Early Cretaceous bird Confuciusornis. PLoS ONE 11:e0167284

    Article  PubMed  PubMed Central  Google Scholar 

  • Figuerola J, Domènech J, Senar JC (2003) Plumage colour is related to ectosymbiont load during moult in the Serin, Serinus serinus: an experimental study. Anim Behav 65:551–557

    Article  Google Scholar 

  • Finseth FR, Iacovelli SR, Harrison RG, Adkins-Regan EK (2013) A nonsemen copulatory fluid influences the outcome of sperm competition in Japanese Quail. J Evol Biol 26:1875–1889

    Article  CAS  PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622

    Article  Google Scholar 

  • Foth C (2011) The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications. J Morphol 272:387–403

    Article  PubMed  Google Scholar 

  • Fox DL (1976) Animal biochromes and structural colours: physical, chemical, distributional & physiological features of coloured bodies in the animal world, 2nd edn. University of California Press, London

    Book  Google Scholar 

  • Fuller ME (2015) The structure and properties of down feathers and their use in the outdoor industry. Ph.D. dissertation, University of Leeds, Leeds, UK

    Google Scholar 

  • Fulmer AG, Hauber ME (2021) Autopreening behaviour may convey information about internal social state in Arabian Babbler (Turdoides squamiceps) allopreening dyads. Behaviour 158:427–446

    Article  Google Scholar 

  • Galván I, Aguilera E, Atiénzar F, Barba E, Blanco G, Cantó JL, Cortés V, Frías Ó, Kovács I, Meléndez L, Møller AP (2012) Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study. J Avian Biol 43:273–279

    Article  Google Scholar 

  • Giraudeau M, Czirják GÁ, Duval C, Bretagnolle V, Gutierrez C, Guillon N, Heeb P (2013) Effect of preen oil on plumage bacteria: an experimental test with the Mallard. Behav Process 92:1–5

    Article  CAS  Google Scholar 

  • Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455

    Article  CAS  PubMed  Google Scholar 

  • Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH Jr (2004) Bacterial degradation of black and white feathers. Auk 121:656–659

    Article  Google Scholar 

  • Golüke S, Dörrenberg S, Krause ET, Caspers BA (2016) Female Zebra Finches smell their eggs. PLoS ONE 11:e0155513

    Article  PubMed  PubMed Central  Google Scholar 

  • Grafen A (1990) Biological signals as handicaps. J Theor Biol 144:517–546

    Article  CAS  PubMed  Google Scholar 

  • Graves GR (2019) Facial caruncles in Jamaican Turkey Vultures (Cathartes aura). J Caribb Ornithol 32:49–52

    Google Scholar 

  • Greeney HF (2012) The natal plumages of antpittas (Grallariidae). Ornitología Colombia 12:65–68

    Google Scholar 

  • Greenwold MJ, Sawyer RH (2011) Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J Exp Zool B: Mol Dev Evol 316:609–616

    Article  CAS  PubMed  Google Scholar 

  • Greenwold MJ, Sawyer RH (2013) Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. J Exp Zool B: Mol Dev Evol 320:393–405

    Article  CAS  PubMed  Google Scholar 

  • Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MTP, Zhang G, Sawyer RH (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 14:249

    Article  PubMed  PubMed Central  Google Scholar 

  • Grieves LA, Bernards MA, MacDougall-Shackleton EA (2019a) Wax ester composition of songbird preen oil varies seasonally and differs between sexes, ages, and populations. J Chem Ecol 45:37–45

    Article  CAS  PubMed  Google Scholar 

  • Grieves LA, Bernards MA, MacDougall-Shackleton EA (2019b) Behavioural responses of songbirds to preen oil odour cues of sex and species. Anim Behav 156:57–65

    Article  Google Scholar 

  • Grieves LA, Gilles M, Cuthill IC, Székely T, MacDougall-Shackleton EA, Caspers BA (2022) Olfactory camouflage and communication in birds. Biol Rev 97:1193–1209

    Article  PubMed  Google Scholar 

  • Griffith SC, Parker TH, Olson VA (2006) Melanin- versus carotenoid-based sexual signals: is the difference really so black and red? Anim Behav 71:749–763

    Article  Google Scholar 

  • Grill SW (2017) The mechanics of positioning skin follicles. Science 357:750–751

    Article  CAS  PubMed  Google Scholar 

  • Grubb TC Jr (1994) Olfactory navigation to the nesting burrow in Leach’s Petrel Oceanodroma leucorrhoa. Anim Behav 22:192–202

    Article  Google Scholar 

  • Gunderson AR (2008) Feather-degrading bacteria: a new frontier in avian and host-parasite research? Auk 125:972–979

    Article  Google Scholar 

  • Gunderson AR, Frame AM, Swaddle JP, Forsyth MH (2008) Resistance of melanized feathers to bacterial degradation: is it really so black and white? J Avian Biol 39:539–545

    Article  Google Scholar 

  • Hahn S, Dimitrov D, Rehse S, Yohannes E, Jenni L (2014) Avian claw morphometry and growth determine the temporal pattern of archived stable isotopes. J Avian Biol 45:202–207

    Article  Google Scholar 

  • Halata Z, Grim M, Baumann KI (2003) The Merkel cell: morphology, developmental origin, function. Cas Lek Cesk 142:4–9

    CAS  PubMed  Google Scholar 

  • Haugen M, Williams JB, Wertz PW, Tieleman BI (2003) Lipids of the stratum corneum vary with cutaneous water loss among larks along a temperature-moisture gradient. Physiol Biochem Zool 76:907–917

    Article  CAS  PubMed  Google Scholar 

  • Hedrick BP, Cordero SA, Zanno LE, Noto C, Dodson P (2019) Quantifying shape and ecology in avian pedal claws: the relationship between the bony core and keratinous sheath. Ecol Evol 9:11545–11556

    Article  PubMed  PubMed Central  Google Scholar 

  • Heilmann G (1926) The origin of birds. H. F. G. Whitherby, London

    Google Scholar 

  • Hill GE (1991) Plumage coloration is a sexually selected indicator of male quality. Nature 350:337–339

    Article  Google Scholar 

  • Hill GE (2006) Female mate choice for ornamental coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, volume II: function and evolution. Harvard University Press, Cambridge, pp 137–200

    Google Scholar 

  • Hill GE, Hood WR, Ge Z, Grinter R, Greening C, Johnson JD, Park NR, Taylor HA, Andreasen VA, Powers MJ, Justyn NM (2019) Plumage redness signals mitochondrial function in the House Finch. Proc R Soc B 286:20191354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirao A, Aoyama M, Sugita S (2009) The role of uropygial gland on sexual behavior in Domestic Chicken Gallus gallus domesticus. Behav Process 80:115–120

    Article  Google Scholar 

  • Hirayama H, Kaneda K, Yamashita H, Monden Y (2001) An accurate illumination model for objects coated with multilayer films. Comput Graph 25:391–400

    Article  Google Scholar 

  • Höfling E, Abourachid A (2021) The skin of birds’ feet: morphological adaptations of the plantar surface. J Morphol 282:88–97

    Article  PubMed  Google Scholar 

  • Hofmann CM, Cronin TW, Omland KE (2008) Evolution of sexual dichromatism. 1. Convergent losses of elaborate female coloration in New World orioles (Icterus spp.). Auk 125:778–789

    Article  Google Scholar 

  • Höhn EO (1977) The ‘snowshoe effect’ of the feathering on ptarmigan feet. Condor 79:380–382

    Article  Google Scholar 

  • Hoi H, Krištofík J, Darolova A, Hoi C (2012) Experimental evidence for costs due to chewing lice in the European Bee-eater (Merops apiaster). Parasitology 139:53–59

    Article  CAS  PubMed  Google Scholar 

  • Homberger DG, Brush AH (1986) Functional morphology and biochemical correlations of the keratinized structures of the African Gray Parrot, Psittacus erithacus (Aves). Zoomorphology 106:103–114

    Article  Google Scholar 

  • Homberger DG, de Silva KN (2000) Functional microanatomy of the feather-bearing integument: implications for the evolution of birds and avian flight. Am Zool 40:553–574

    Google Scholar 

  • Hone DW, Tischlinger H, Xu X, Zhang F (2010) The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light. PLoS ONE 5:e9223

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudon J (2005) Considerations in the conservation of feathers and hair, particularly their pigments. In: Brunn M, Burns JA (eds) Fur trade legacy. The preservation of organic materials. Canadian Association for Conservation of Cultural Property, Ottawa, pp 127–147

    Google Scholar 

  • Igic B, D’Alba L, Shawkey MD (2016) Manakins can produce iridescent and bright feather colours without melanosomes. J Exp Biol 219:1851–1859

    Article  PubMed  Google Scholar 

  • Imber MJ (1971) Filoplumes of petrels and shearwaters. N Z J Mar Freshwater Res 5:396–403

    Article  Google Scholar 

  • Iskandar J-P, Eliason CM, Astrop T, Igic B, Maia R, Shawkey MD (2016) Morphological basis of glossy red plumage colours. Biol J Linn Soc 119:477–487

    Article  Google Scholar 

  • Iverson ENK, Karubian J (2017) The role of bare parts in avian signaling. Auk 134:587–611

    Article  Google Scholar 

  • Jackson HD (2007) Measurements and functions of the pectinated claws and rictal bristles of Fiery-necked Nightjars Caprimulgus pectoralis and some congeners. Ostrich 78:641–643

    Article  Google Scholar 

  • Jacob J, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic Press, New York, pp 199–324

    Chapter  Google Scholar 

  • Jacob J, Eigener U, Hoppe U (1997) The structure of preen gland waxes from pelecaniform birds containing 3,7-dimethyloctan-1-ol: an active ingredient against dermatophytes. Zeitschrift für Naturforschung C 52:114–123

    Article  CAS  Google Scholar 

  • Johansson LC, Norberg UML (2001) Lift-based paddling in diving grebe. J Exp Biol 204:1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Johnsgard PA (1983) The grouse of the world. University of Nebraska Press, Lincoln

    Google Scholar 

  • Johnson KP, Shreve SM, Smith VS (2012) Repeated adaptive divergence of microhabitat specialization in avian feather lice. BMC Biol 10:1

    Article  Google Scholar 

  • Johnston DW (1988) A morphological atlas of the avian uropygial gland. Bull Br Mus (Nat Hist) Zool 54:199–259

    Google Scholar 

  • Justyn NM, Powers MJ, Hill GE, Alexander K, Naveda-Rodríguez A, Rush SA (2023) The mechanisms of color production in black skin versus red skin on the heads of New World vultures. Avian Res 14:100071

    Article  Google Scholar 

  • Katasho Y, Liang Y, Murata S, Fukunaka Y, Matsuoka T, Takahashi S (2015) Mechanisms for enhanced hydrophobicity by atomic-scale roughness. Sci Rep 5:13790

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellner AWA, Wang XL, Tischlinger H, Campos DD, Hone DWE, Meng X (2010) The soft tissue of Jeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane. Proc R Soc B 277:321–329

    Article  PubMed  Google Scholar 

  • Kemp AC (2001) Family Bucerotidae (Hornbills). In: del Hoyo J, Elliott A, Aargatal J (eds) Handbook of the birds of the world, Mousebirds to Hornbills, vol 6. Lynx Edicions, Barcelona, pp 436–623

    Google Scholar 

  • Kenny E, Birkhead TR, Green JP (2017) Allopreening in birds is associated with parental cooperation over offspring care and stable pair bonds across years. Behav Ecol 28:1142–1148

    Article  PubMed  PubMed Central  Google Scholar 

  • Kent CM, Burtt EH Jr (2016) Feather-degrading bacilli in the plumage of wild birds: prevalence and relation to feather wear. Auk 133:583–592

    Article  Google Scholar 

  • Kilner RM (2006) Function and evolution of color in young birds. In: Hill GE, McGraw KJ (eds) Bird coloration: function and evolution, vol II. Harvard University Press, Cambridge, pp 201–232

    Google Scholar 

  • Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401

    Article  Google Scholar 

  • Knopf FL, Evans RM (2020) American White Pelican (Pelecanus erythrorhynchos), version 1.0. In: Poole AF (ed) Birds of the World. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Koch RE, McGraw KJ, Hill GE (2016) Effects of diet on plumage coloration and carotenoid deposition in red and yellow Domestic Canaries (Serinus canaria). Wilson J Ornithol 128:328–333

    Article  Google Scholar 

  • Kose M, Møller AP (1999) Sexual selection, feather breakage and parasites: the importance of white spots in the tail of the Barn Swallow (Hirundo rustica). Behav Ecol Sociobiol 45:430–436

    Article  Google Scholar 

  • Kraaijeveld K (2014) Reversible trait loss: the genetic architecture of female ornaments. Annu Rev Ecol Syst 45:159–177

    Article  Google Scholar 

  • Ksepka DT (2020) Feathered dinosaurs. Curr Biol 30:R1347–R1353

    Article  CAS  PubMed  Google Scholar 

  • Kuenzel WJ (2007) Neurobiological basis of sensory perception: welfare implications of beak trimming. Poult Sci 86:1273–1282

    Article  CAS  PubMed  Google Scholar 

  • Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305

    Article  PubMed  Google Scholar 

  • Law-Brown J (2001) Chemical defence in the Red-billed Woodhoopoe, Phoeniculus purpureus. M. S. thesis, University of Cape Town, Cape Town, South Africa

    Google Scholar 

  • Lederer RJ (1972) The role of avian rictal bristles. Wilson Bull 84:193–197

    Google Scholar 

  • Ligon JD, Ligon SH (1978) Communal breeding in Green Woodhoopoes as a case for reciprocity. Nature 276:496–498

    Article  Google Scholar 

  • Lillywhite HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226

    Article  PubMed  Google Scholar 

  • Lingham-Soliar T (2014) Feather structure, biomechanics and biomimetics: the incredible lightness of being. J Ornithol 155:232–336

    Google Scholar 

  • Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc R Soc B 274:1823–1829

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Bai L, Yang J, Gu H, Zhong Q, **e Z, Gu Z (2019) Self-assembled colloidal arrays for structural color. Nanoscale Adv 1:1672–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd-Jones DJ, Briskie JV (2016) Mutual wattle ornaments in the South Island Saddleback (Philesturnus carunculatus) function as armaments. Ethology 122:61–71

    Article  Google Scholar 

  • Lombardo MP, Drake P, Olson A, Otieno S, Spadacene L, Thorpe PA (2015) Feather-chewing lice and Tree Swallow biology. Auk 132:551–561

    Article  Google Scholar 

  • Londoño GA, García DA, Sánchez Martínez MA (2015) Morphological and behavioral evidence of Batesian mimicry in nestlings of a lowland Amazonian bird. Am Nat 185:135–141

    Article  PubMed  Google Scholar 

  • Lowe CB, Clarke JA, Baker AJ, Haussler D, Edwards SV (2015) Feather development genes and associated regulatory innovation predate the origin of Dinosauria. Mol Biol Evol 32:23–28

    Article  CAS  PubMed  Google Scholar 

  • Lucas AM (1970) Avian functional anatomic problems. Fed Proc 29:1641–1648

    CAS  PubMed  Google Scholar 

  • Lucas AM (1979) Integumentum commune. In: Baumel JJ, King AS, Lucas AM, Breazile JF, Evans HE (eds) Nomina anatomica avium. Academic Press, New York

    Google Scholar 

  • Lucas AM, Stettenheim PR (1972) Avian anatomy. Integument. Agriculture Handbook 362, U.S. Department of Agriculture, Washington, D.C.

    Google Scholar 

  • Lyon BE, Eadie JM, Hamilton LD (1994) Parental choice selects for ornamental plumage in American Coot chicks. Nature 371:240–243

    Article  Google Scholar 

  • Margalida A, Braun MS, Negro JJ, Schulze-Hagen K, Wink M (2019) Cosmetic colouring by Bearded Vultures Gypaetus barbatus: still no evidence for an antibacterial function. PeerJ 7:e6783

    Article  PubMed  PubMed Central  Google Scholar 

  • Masello JF, Lubjuhn T, Quillfeldt P (2008) Is the structural and psittacofulvin-based coloration of wild Burrowing Parrots Cyanoliseus patogonus condition dependent? J Avian Biol 39:653–662

    Article  Google Scholar 

  • Masello JF, Quillfeldt P (2003) Body size, body condition and ornamental feathers of Burrowing Parrots: variation between years and sexes, assortative mating and influences on breeding success. Emu 103:149–161

    Article  Google Scholar 

  • Massaro M, Davis LS, Darby JT (2003) Carotenoid-derived ornaments reflect parental quality in male and female Yellow-eyed Penguins (Megadyptes antipodes). Behav Ecol Sociobiol 55:169–175

    Article  Google Scholar 

  • Masterson ANB (1979) Of birds, the war and the future. Honeyguide 100:7–11

    Google Scholar 

  • Mateos C, Carranza J (1996) On the intersexual selection for spurs in the Ring-necked Pheasant. Behav Ecol 7:362–369

    Article  Google Scholar 

  • Matin TR, Leong MK, Majlis BY, Gebeshuber IC, Abdullah M (2010) Correlating nanostructures with function: structural colors on the wings of a Malaysian bee. AIP Conf Proc 1284:5–14

    Article  Google Scholar 

  • Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) The evolution of life. University of Chicago Press, Chicago, pp 349–380

    Google Scholar 

  • McGraw KJ (2006a) Mechanics of melanin-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, volume I: mechanisms and measurements. Harvard University Press, Cambridge, pp 243–294

    Google Scholar 

  • McGraw KJ (2006b) Mechanics of carotenoid-based coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, volume I: mechanisms and measurements. Harvard University Press, Cambridge, pp 177–242

    Chapter  Google Scholar 

  • McGraw KJ (2006c) Mechanics of uncommon colors: pterins, porphyrins, and psittacofulvins. In: Hill GE, McGraw KJ (eds) Bird coloration, volume I: mechanisms and measurements. Harvard University Press, Cambridge, pp 354–398

    Google Scholar 

  • McGraw KJ (2007) Dietary mineral content influences melanin-based ornamental coloration. Behav Ecol 18:137–142

    Article  Google Scholar 

  • McGraw KJ (2008) An update on the honesty of melanin-based color signals in birds. Pigment Cell Melanoma Res 21:133–138

    Article  PubMed  Google Scholar 

  • McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin- and structurally based ornamental plumage. J Exp Biol 205:3747–3755

    Article  PubMed  Google Scholar 

  • McGraw KJ, Toomey MB, Nolan PM, Morehouse NI, Massaro M, Jouventin P (2007) A description of unique fluorescent yellow pigments in penguin feathers. Pigment Cell Res 20:301–304

    Article  CAS  PubMed  Google Scholar 

  • McGraw KJ, Massaro M, Rivers TJ, Mattern T (2009) Annual, sexual, size- and condition-related variation in the colour and fluorescent pigment content of yellow crest-feathers in Snares Penguins (Eudyptes robustus). Emu 109:93–99

    Article  Google Scholar 

  • McLandress MR (1983) Winning with warts? A threat posture suggests a function for caruncles in Ross’s Geese. Wildfowl 34:5–9

    Google Scholar 

  • McNamara ME, Zhang F, Kearns SL, Orr PJ, Toulouse A, Foley T, Hone DWE, Rogers CS, Benton MJ, Johnson D, Xu X, Zhou Z (2018) Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. Nat Commun 9:2072

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon GK (1984) Glandular functions of avian integument: an overview. J Yamashina Inst Ornithol 16:1–12

    Article  Google Scholar 

  • Menon GK, Menon J (2000) Avian epidermal lipids: functional considerations and relationship to feathering. Integr Comp Biol 40:540–552

    CAS  Google Scholar 

  • Menon GK, Maderson PFA, Drewes RC, Baptista LF, Price LF, Elias PM (1996) Ultrastructural organization of avian stratum corneum lipids as the basis for facultative cutaneous waterproofing. J Morphol 227:1–13

    Article  CAS  PubMed  Google Scholar 

  • Mewaldt LR (1958) Pterylography and natural and experimentally induced molt in Clark’s Nutcracker. Condor 60:165–187

    Article  Google Scholar 

  • Mínguez E (1997) Olfactory nest recognition by British storm-petrel chicks. Anim Behav 53:701–707

    Article  Google Scholar 

  • Mock DW (2016) Animal behavior: some begging is actually bragging. Nature 532:180–181

    Article  CAS  PubMed  Google Scholar 

  • Møller AP, Laursen K (2019) Function of the uropygial gland in eiders (Somateria mollissima). Avian Res 10:24

    Article  Google Scholar 

  • Møller AP, Mateos-González F (2019) Plumage brightness and uropygial gland secretions in Barn Swallows. Curr Zool 65:177–182

    Article  Google Scholar 

  • Møller AP, de Lope F, Saino N (2004) Parasitism, immunity, and arrival date in a migratory bird, the Barn Swallow. Ecology 85:206–219

    Article  Google Scholar 

  • Montgomerie R (2006) Cosmetic and adventitious colors. In: Hill GE, McGraw KJ (eds) Bird coloration, volume I: mechanisms and measurements. Harvard University Press, Cambridge, pp 399–427

    Google Scholar 

  • Montgomerie R, Lyon B, Holder K (2001) Dirty ptarmigan: behavioral modification of conspicuous male plumage. Behav Ecol 12:429–438

    Article  Google Scholar 

  • Morelli R, Loscalzo R, Stradi R, Bertelli A, Falchi M (2003) Evaluation of the antioxidant activity of new carotenoid-like compounds by electron paramagnetic resonance. Drugs Exp Clin Res 29:95–100

    CAS  PubMed  Google Scholar 

  • Moreno-Rueda G, Hoi H (2012) Female House Sparrows prefer big males with a large white wing bar and fewer feather holes caused by chewing lice. Behav Ecol 23:271–277

    Article  Google Scholar 

  • Morlion ML (1985) Pterylosis of the wing and tail in the Noisy Scrub-bird, Atrichornis clamosus, and Superb Lyrebird, Menura novaehollandiae (Passeriformes: Atrichornithidae and Menuridae). Rec Aust Mus 37:143–156

    Article  Google Scholar 

  • Mougeot F, Arroyo BE (2006) Ultraviolet reflectance by the cere of raptors. Biol Lett 2:173–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyer BR, Clayton DH (2003) Avian defenses against ectoparasites. In: van Emden HF, Rothschild M (eds) Insect and bird interactions. Intercept Ltd., Andover, pp 241–257

    Google Scholar 

  • Moyer BR, Peterson AT, Clayton DH (2002) Influence of bill shape on ectoparasite load in Western Scrub-Jays. Condor 104:675–678

    Article  Google Scholar 

  • Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in Rock Doves (Columba livia). Auk 120:490–496

    Article  Google Scholar 

  • Munoz-Garcia A, Williams JB (2005) Cutaneous water loss and lipids of the stratum corneum in House Sparrows Passer domesticus from arid and mesic environments. J Exp Biol 208:3689–3700

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Garcia A, Williams JB (2007) Cutaneous water loss and lipids of the stratum corneum in Dusky Antbirds, a lowland tropical bird. Condor 109:59–66

    Article  Google Scholar 

  • Muza MM, Burtt EH, Ichida JM (2000) Distribution of bacteria on feathers of some eastern North American birds. Wilson Bull 112:432–435

    Article  Google Scholar 

  • Negro JJ, Margalida A, Hiraldo F, Heredia R (1999) The function of the cosmetic coloration of Bearded Vultures: when art imitates life. Anim Behav 58:F14–F17

    Article  CAS  PubMed  Google Scholar 

  • Negro JJ, Grande JM, Tella JA, Garrido J, Hornero D, Donázar JA, Sanchez-Zapata JA, Benítez JR, Barcell M (2002) An unusual source of essential carotenoids. Nature 416:807

    Article  CAS  PubMed  Google Scholar 

  • Negro JJ, Sarasola JH, Fariñs F, Zorrilla I (2006) Function and occurrence of facial flushing in birds. Comp Biochem Physiol A 143:78–84

    Article  Google Scholar 

  • Ng CS, Wu P, Fan W-L, Yan J, Chen C-K, Lai Y-T, Wu S-M, Mao CT, Chen JJ, Lu MYJ, Ho MR (2014) Genomic organization, transcriptomic analysis, and functional characterization of avian α-and β-keratins in diverse feather forms. Genome Biol Evol 6:2258–2273

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolaï MP, Shawkey MD, Porchetta S, Claus R, D’Alba L (2020) Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat Commun 11:2414

    Article  PubMed  PubMed Central  Google Scholar 

  • Noramly S, Morgan BA (1998) BMPs mediate lateral inhibition at successive stages of feather tract development. Development 125:3775–3787

    Article  CAS  PubMed  Google Scholar 

  • Nordén KK, Faber JW, Babarović F, Stubbs TL, Selly T, Schiffbauer JD, Štefanić PP, Mayr G, Smithwick FM, Vinther J (2019) Melanosome diversity and convergence in the evolution of iridescent avian feathers—implications for paleocolor reconstruction. Evolution 73:15–27

    Article  PubMed  Google Scholar 

  • Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299

    Article  CAS  Google Scholar 

  • Nudds RL, Dyke GJ (2010) Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887–889

    Article  CAS  PubMed  Google Scholar 

  • Ornelas JF (1994) Serrate tomia: an adaptation for nectar robbing in hummingbirds? Auk 111:703–710

    Google Scholar 

  • Osborne DR, Bourne GR (1977) Breeding behavior and food habits of the Wattled Jacana. Condor 79:98–105

    Article  Google Scholar 

  • Osorio D, Ham AD (2002) Spectral reflectance and directional properties of structural coloration in bird plumage. J Exp Biol 205:2017–2027

    Article  CAS  PubMed  Google Scholar 

  • Osváth G, Daubner T, Dyke G, Fuisz TI, Nord A, Pénzes J, Vargancsik D, Vágási CI, Vincze O, Pap PL (2018) How feathered are birds? Environment predicts both the mass and density of body feathers. Funct Ecol 32:701–712

    Article  Google Scholar 

  • Padian K (2003) Four-winged dinosaurs, bird precursors, or neither? BioScience 53:451–453

    Article  Google Scholar 

  • Pan Y, Zheng W, Sawyer RH, Pennington MW, Zheng X, Wang X, Wang M, Hu L, O’Connor J, Zhao T, Li Z (2019) The molecular evolution of feathers with direct evidence from fossils. Proc Natl Acad Sci USA 116:3018–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pap PL, Tökölyi J, Szép T (2005a) Host-symbiont relationship and abundance of feather mites in relation to age and body condition of the Barn Swallow (Hirundo rustica): an experimental study. Can J Zool 83:1059–1066

    Article  Google Scholar 

  • Pap PL, Tökölyi J, Szep T (2005b) Frequency and consequences of feather holes in Barn Swallows Hirundo rustica. Ibis 147:169–175

    Article  Google Scholar 

  • Pap PL, Vágási CI, Osváth G, Mureşan C, Barta Z (2010) Seasonality in the uropygial gland size and feather mite abundance in House Sparrows Passer domesticus: natural covariation and an experiment. J Avian Biol 41:653–661

    Article  Google Scholar 

  • Pap PL, Vincze O, Wekerle B, Daubner T, Vágási CI, Nudds RL, Dyke GJ, Osváth G (2017) A phylogenetic comparative analysis reveals correlations between body feather structure and habitat. Funct Ecol 31:1241–1251

    Article  Google Scholar 

  • Papeschi A, Carroll JP, Dessì-Fulgheri F (2003) Wattle size is correlated with male territorial rank in juvenile Ring-necked Pheasants. Condor 105:362–366

    Article  Google Scholar 

  • Parker TH, Ligon JD (2003) Female mating preferences in Red Junglefowl: a meta-analysis. Ethol Ecol Evol 15:63–72

    Article  Google Scholar 

  • Penteriani V, del Mar Delgado M, Maggio C, Aradis A, Sergio F (2005) Development of chicks and predispersal behaviour of young in the Eagle Owl Bubo bubo. Ibis 147:155–168

    Article  Google Scholar 

  • Pérez-Rodríguez L, Viñuela J (2008) Carotenoid-based bill and eye ring coloration as honest signals of condition: an experimental test in the Red-legged Partridge (Alectoris rufa). Naturwissenschaften 95:821–830

    Article  PubMed  Google Scholar 

  • Perrella DF, Guida FJV (2019) Additional information on reproductive behavior of the Red-breasted Toucan, Ramphastos dicolorus (Aves: Piciformes: Ramphastidae). Biota Neotropica 19:e20180576

    Article  Google Scholar 

  • Perrichot V, Marion L, Néraudeau D, Vullo R, Tafforeau P (2008) The early evolution of feathers: fossil evidence from Cretaceous amber of France. Proc R Soc B 275:1197–1202

    Article  PubMed  PubMed Central  Google Scholar 

  • Pervez NK, Cheng W, Jia Z, Cox MP, Edrees HM, Kymissis I (2010) Photonic crystal spectrometer. Opt Express 18:8277–8285

    Article  CAS  PubMed  Google Scholar 

  • Picasso MBJ, Mario R, Barbeito CG (2016) The skin structure of Greater Rhea (Rheidae, Palaeognathae). Acta Zoologica 97:302–309

    Article  Google Scholar 

  • Piersma T, van Aelst R, Kurk K, Berkhoudt H, Maas LRM (1998) A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics? Proc R Soc B 265:1377–1383

    Article  PubMed Central  Google Scholar 

  • Pike AVL, Maitland DP (2004) Scaling of bird claws. J Zool 262:73–81

    Article  Google Scholar 

  • Poston JP, Hasselquist D, Stewart IRK, Westneat DF (2005) Dietary amino acids influence plumage traits and immune responses of male House Sparrows, Passer domesticus, but not as expected. Anim Behav 70:1171–1181

    Article  Google Scholar 

  • Powers MJ, Hill GE (2021) A review and assessment of the Shared-Pathway Hypothesis for the maintenance of signal honesty in red ketocarotenoid-based coloration. Integr Comp Biol 61:1811–1826

    Article  CAS  PubMed  Google Scholar 

  • Prater AJ, Marchant JH, Vuorinen J (1977) Guide to the identification and aging of Holarctic waders. British Trust for Ornithology, Tring

    Google Scholar 

  • Pratt TK (2000) Evidence for a previously unrecognized species of owlet-nightjar. Auk 117:1–11

    Article  Google Scholar 

  • Praveenkumar D, Vinothkumar A, Saravanan G, Selvakumar M, Vijayakumar AS, Kolanchinathan P, Kamalakkannan S, Achiraman S (2023) Symbiotic microbes play a role more important than preen gland in avian pheromone production––a review. Avian Biol Res 16:32–41

    Article  Google Scholar 

  • Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (2003) The chewing lice: world checklist and biological overview. Illinois Natural History Survey Special Publication 24, Champaign

    Google Scholar 

  • Proctor HC (2003) Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annu Rev Entomol 48:185–209

    Article  CAS  PubMed  Google Scholar 

  • Proctor NS, Lynch PJ (1993) Manual of ornithology: avian structure and function. Yale University Press, New Haven

    Google Scholar 

  • Proctor H, Owens I (2000) Mites and birds: diversity, parasitism and coevolution. Trends Ecol Evol 15:358–364

    Article  CAS  PubMed  Google Scholar 

  • Prum RO (1999) Development and evolutionary origin of feathers. J Exp Zool 285:291–306

    Article  CAS  PubMed  Google Scholar 

  • Prum RO (2005) Evolution of the morphological innovations of feathers. J Exp Zool 304B:570–579

    Article  Google Scholar 

  • Prum RO (2006) Anatomy, physics, and evolution of structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol. I: mechanisms and measurements. Harvard University Press, Cambridge, pp 295–353

    Google Scholar 

  • Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295

    Article  PubMed  Google Scholar 

  • Prum RO, Brush AH (2003) Which came first, the feather or the bird? Sci Am 288:84–93

    Article  PubMed  Google Scholar 

  • Prum RO, Razafindratsita VR (1997) Lek behavior and natural history of the Velvet Asity Philepitta castanea (Eurylaimidae). Wilson Bull 109:371–392

    Google Scholar 

  • Prum RO, Torres R (2003a) Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays. J Exp Biol 206:2409–2429

    Article  PubMed  Google Scholar 

  • Prum RO, Torres RH (2003b) A Fourier tool for the analysis of coherent light scattering by bio-optical nanostructures. Integr Comp Biol 43:591–602

    Article  PubMed  Google Scholar 

  • Prum RO, Torres RH (2013) Fourier blues: structural coloration of biological tissues. In: Andrews TD, Balan R, Benedetto JJ, Czaja W, Okoudjou KA (eds) Escursions in harmonic analysis, vol 2. Springer, New York, pp 401–422

    Google Scholar 

  • Prum RO, Williamson S (2001) Theory of the growth and evolution of feather shape. J Exp Zool 291:30–57

    Article  CAS  PubMed  Google Scholar 

  • Prum RO, Morrison RL, Ten Eyck GR (1994) Structural color production by constructive reflection from ordered collagen arrays in a bird (Philepitta castanea: Eurylaimidae). J Morphol 222:61–72

    Article  PubMed  Google Scholar 

  • Prum RO, Torres R, Williamson S, Dyck J (1999) Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc R Soc B 266:13–22

    Article  CAS  PubMed Central  Google Scholar 

  • Prum RO, LaFountain AM, Berro J, Stoddard MC, Frank HA (2012) Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J Comp Physiol B 182:1095–1116

    Article  CAS  PubMed  Google Scholar 

  • Pryke SR, Andersson S (2003) Carotenoid-based status signaling in Red-shouldered Widowbirds (Euplectes axillaris): epaulet size and redness affect captive and territorial competition. Behav Ecol Sociobiol 53:393–401

    Article  Google Scholar 

  • Qiang J, Currie PJ, Norell MA, Shu-An J (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761

    Article  CAS  Google Scholar 

  • Quay WB (1967) Comparative survey of the anal glands of birds. Auk 84:379–389

    Article  Google Scholar 

  • Rand AL (1954) On the spurs on bird’s wings. Wilson Bull 66:127–134

    Google Scholar 

  • Rauhut OW, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the Late Jurassic of Germany. Proc Natl Acad Sci USA 109:11746–11751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regal PJ (1975) The evolutionary origin of feathers. Q Rev Biol 50:35–66

    Article  CAS  PubMed  Google Scholar 

  • Reneerkens J, Piersma T, Damsté JSS (2005) Switch to diester preen waxes may reduce avian nest predation by mammalian predators using olfactory cues. J Exp Biol 208:4199–4202

    Article  PubMed  Google Scholar 

  • Reneerkens J, Versteegh MA, Schneider AM, Piersma T, Burtt EH Jr (2008) Seasonally changing preen-wax composition: Red Knots’ (Calidris canutus) flexible defense against feather-degrading bacteria. Auk 125:285–290

    Article  Google Scholar 

  • Reynolds SM, Castro I, Alley MR, Cunningham SJ (2017) Apteryx spp. (Kiwi) possess an uropygial gland: anatomy and pathology. Eur J Anat 21:125–139

    Google Scholar 

  • Rico-Guevara A, Rubega MA, Hurme KJ, Dudley R (2019) Shifting paradigms in the mechanics of nectar extraction and hummingbird bill morphology. Integr Org Biol 1:oby006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedler R, Pesme C, Druzik J, Gleeson M, Pearlstein E (2014) A review of color-producing mechanisms in feathers and their influence on preventive conservation strategies. J Amer Inst Cons 53:44–65

    Article  Google Scholar 

  • Rintamäki PT, Höglund J, Karvonen E, Alatalo RV, Björklund N, Lundberg A, Rätti O, Vouti J (2000) Combs and sexual selection in Black Grouse (Tetrao tetrix). Behav Ecol 11:465–471

    Article  Google Scholar 

  • Rohwer VG, Rohwer S, Kane L (2021) Filoplume morphology covaries with their companion primary suggesting that they are feather-specific sensors. Ornithology 138:ukab024

    Article  Google Scholar 

  • Ruiz-Rodríguez M, Tomas G, Martín-Gálvez D, Ruiz-Castellano C, Soler JJ (2015) Bacteria and the evolution of honest signals. The case of ornamental throat feathers in Spotless Starlings. Funct Ecol 29:701–709

    Article  Google Scholar 

  • Ruiz-Rodríguez M, Møller AP, Mousseau TA, Soler JJ (2016) Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas. Sci Nat 103:71

    Article  Google Scholar 

  • Saitta ET, Gelernter R, Vinther J (2018) Additional information on the primitive contour and wing feathering of paravian dinosaurs. Palaeontology 61:273–288

    Article  Google Scholar 

  • Saliban A, Montalti D (2009) Physiological and biochemical aspects of the avian uropygial gland. Braz J Biol 69:437–446

    Article  Google Scholar 

  • Saranathan V, Burtt EH Jr (2007) Sunlight on feathers inhibits feather-degrading bacteria. Wilson J Ornithol 119:239–245

    Article  Google Scholar 

  • Saranathan V, Narayanan S, Sandy A, Dufresne ER, Prum RO (2021) Evolution of single gyroid photonic crystals in bird feathers. Proc Natl Acad Sci USA 118:e2101357118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer RH, Glenn T, French JO, Mays B, Shames RB, Barnes GL Jr, Rhodes W, Ishikawa Y (2000) The expression of beta-keratins in the epidermal appendages of reptiles and birds. Am Zool 40:530–539

    CAS  Google Scholar 

  • Saxod R (1996) Ontogeny of the cutaneous sensory organs. Microsc Res Tech 34:313–333

    Article  CAS  PubMed  Google Scholar 

  • Schreiber RW, Schreiber EA, Anderson DW, Bradley DW (1989) Plumages and molts of Brown Pelicans. Nat Hist Mus Los Angeles County Contrib Sci 402:1–43

    Google Scholar 

  • Seiwert CM, Adkins-Regan E (1998) The foam production system of male Japanese Quail: characterization of structure and function. Brain Behav Evol 52:61–80

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne SS, Jones IL (2008) Mechanosensory function for facial ornamentation in the Whiskered Auklet, a crevice-dwelling seabird. Behav Ecol 19:784–790

    Article  Google Scholar 

  • Shaw CL, Rutter JE, Austin AL, Garvin MC, Whelan RJ (2011) Volatile and semivolatile compounds in Gray Catbird uropygial secretions vary with age and between breeding and wintering grounds. J Chem Ecol 37:329–339

    Article  CAS  PubMed  Google Scholar 

  • Shawkey MD, D’Alba L (2017) Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos Trans R Soc B 372:20160536

    Article  Google Scholar 

  • Shawkey MD, Hill GE (2004) Feathers at a fine scale. Auk 121:652–655

    Article  Google Scholar 

  • Shawkey MD, Hill GE (2005) Carotenoids need structural colours to shine. Biol Lett 1:121–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349

    Article  Google Scholar 

  • Shawkey MD, Balenger SL, Hill GE, Johnson LS, Keyser AJ, Siefferman L (2006a) Mechanisms of evolutionary change in structural plumage coloration among bluebirds (Sialia spp.). J R Soc Interface 3:527–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, Hauber ME, Estep LK, Hill GE (2006b) Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J R Soc Interface 3:777–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am Nat 169(Suppl 1):S112–S121

    Article  PubMed  Google Scholar 

  • Shawkey MD, Morehouse NI, Vukusic P (2009a) A protean palette: colour materials and mixing in birds and butterflies. J R Soc Interface 6(Suppl 2):S221–S231

    PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, Saranathan V, Palsdottir H, Crum J, Ellisman MH, Auer M, Prum RO (2009b) Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure. J R Soc Interface 6:S213–S220

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawkey MD, D’Alba L, Wozny J, Eliason C, Koop JAH, Jia L (2011) Structural color change following hydration and dehydration of iridescent Mourning Dove (Zenaida macroura) feathers. Zoology 114:59–68

    Article  PubMed  Google Scholar 

  • Shu-hui Y, Yan-chun X, Da-wei Z (2006) Morphological basis for the waterproof characteristics of bird plumage. J For Res 17:163–166

    Article  Google Scholar 

  • Shutler D (2019) Some important overlooked aspects of odors in avian nesting ecology. J Avian Biol 50:e02003

    Article  Google Scholar 

  • Shyer AE, Rodrigues AR, Schroeder GG, Kassianidou E, Kumar S, Harland RM (2017) Emergent cellular self-organization and mechanosensation initiate follicle pattern in the avian skin. Science 357:811–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons ELR (2009) The evolution of forelimb morphology and flight mode in extant birds. Ph.D. dissertation, Ohio University, Athens, OH

    Google Scholar 

  • Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, Peralta-Sánchez JM, Méndez M (2008) Symbiotic association between Hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871

    Article  Google Scholar 

  • Soliman SA, Madkour FA (2017) A comparative analysis of the organization of the sensory units in the beak of duck and quail. Histol Cytol Embryol 1:1–16

    Google Scholar 

  • Spearman RIC (1966) The keratinization of epidermal scales, feathers, and hair. Biol Rev Camb Philos Soc 41:59–96

    Article  CAS  PubMed  Google Scholar 

  • Spearman RIC, Hardy JA (1985) Integument. In: King AS, McLelland J (eds) Form and function in birds, vol 3. Academic Press, London, pp 1–56

    Google Scholar 

  • Srinivasan S, Chhatre SS, Guardado JO, Park K-C, Parker AR, Rubner MF, McKinley GH, Cohen RE (2014) Quantification of feather structure, wettability and resistance to liquid penetration. J R Soc Interface 11:20140287

    Article  PubMed  PubMed Central  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Patterns of development: the altricial-precocial spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford, pp 3–30

    Chapter  Google Scholar 

  • Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104

    Article  PubMed  Google Scholar 

  • Stavenga DG, Leertouwer HL, Osorio DC, Wilts BD (2015) High refractive index of melanin in shiny occipital feathers of a bird of paradise. Light: Sci Appl 4:e243

    Article  Google Scholar 

  • Stegmann B (1956) Über die herkunft de flüchtigen rosenroten federpigments. Journal für Ornithologie 97:204–205

    Article  CAS  Google Scholar 

  • Steiner H (1917) Das problem der diastataxie des vogelflügels. Jenaische Zeitschrift für Naturwissenschaft 55:222–496

    Google Scholar 

  • Stettenheim P (1972) The integument of birds. In: Farner DS, King JR (eds) Avian biology, vol II. Academic Press, New York, pp 1–63

    Google Scholar 

  • Stettenheim PR (2000) The integumentary morphology of modern birds – an overview. Am Zool 40:461–477

    Google Scholar 

  • Stoddard MC, Prum RO (2011) How colorful are birds? Evolution of the avian plumage color gamut. Behav Ecol 22:1042–1052

    Article  Google Scholar 

  • Stokkan K-A (1992) Energetics and adaptations to cold in ptarmigan in winter. Ornis Scand 23:366–370

    Article  Google Scholar 

  • Stolpe M (1935) Colymbus, Hesperornis, Podiceps: ein vergleich ihrer hinteren extremität. J Ornithol 83:115–128

    Article  Google Scholar 

  • Stoutjesdijk F (2002) The ugly duckling: a thermal viewpoint. J Therm Biol 27:413–422

    Article  Google Scholar 

  • Sues H-D (2001) Palaeontology: ruffling feathers. Nature 410:1036–1037

    Article  CAS  PubMed  Google Scholar 

  • Sullivan TN, Pissarenko A, Herrera SA, Kisailus D, Lubarda VA, Meyers MA (2016) A lightweight, biological structure with tailored stiffness: the feather vane. Acta Biomaterialia 41:27–39

    Article  PubMed  Google Scholar 

  • Sullivan TN, Zhang Y, Zavattieri PD, Meyers MA (2018) Hydration-induced shape and strength recovery of the feather. Adv Funct Mater 2018:1801250

    Article  Google Scholar 

  • Sun J, Bhushan B, Tong J (2013) Structural coloratoin in nature. RSC Adv 3:14862–14889

    Article  CAS  Google Scholar 

  • Sun L, Zhou T, Wan Q-H, Fang S-G (2020) Transcriptome comparison reveals key components of nuptial plumage coloration in Crested Ibis. Biomolecules 10:905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surmacki A, Siefferman L, Yuan HW (2011) Effects of sunlight exposure on carotenoid-based and structural coloration of the Blue-tailed Bee-eater. Condor 113:590–596

    Article  Google Scholar 

  • Sustaita D, Rubega MA (2014) The anatomy of a shrike bite: bill shape and bite performance in Loggerhead Shrikes. Biol J Linn Soc 112:485–498

    Article  Google Scholar 

  • Swaddle JP, Witter MS, Cuthill IC, Budden A, McCowen P (1996) Plumage condition affects flight performance in Common Starlings: implications for developmental homeostasis, abrasion and moult. J Avian Biol 27:103–111

    Article  Google Scholar 

  • Tedore C, Johnsen S (2017) Using RGB displays to portray color realistic imagery to animal eyes. Curr Zool 63:27–34

    Article  PubMed  Google Scholar 

  • Thomas BT (1996) Family Opisthocomidae (Hoatzin). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3. Lynx Edicions, Barcelona, pp 23–32

    Google Scholar 

  • Thomas DB, McGraw KJ (2018) Hidden carotenoids in the powder-down of herons. J Ornithol 159:785–792

    Article  Google Scholar 

  • Thomas DB, McGoverin CM, McGraw KJ, James HF, Madden O (2013) Vibrational spectroscopic analyses of unique yellow feather pigments (spheniscins) in penguins. J R Soc Interface 10:20121065

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF (2014) Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc R Soc B 281:20140806

    Article  PubMed  PubMed Central  Google Scholar 

  • Tinbergen J, Wilts BD, Stavenga DG (2013) Spectral tuning of Amazon parrot feather coloration by psittacofulvin pigments and spongy structures. J Exp Biol 216:4358–4364

    PubMed  Google Scholar 

  • Tokita M, Matsushita H, Asakura Y (2020) Developmental mechanisms underlying webbed foot morphological diversity in waterbirds. Sci Rep 10:8028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tompkins DM, Jones T, Clayton DH (1996) Effect of vertically transmitted ectoparasites on the reproductive success of swifts (Apus apus). Funct Ecol 10:733–740

    Article  Google Scholar 

  • Tributsch H (2016) Ochre bathing of the Bearded Vulture: a bio-mimetic model for early humans towards smell prevention and health. Animals 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  • True JR, Carroll SB (2002) Gene co-option in physiological and morphological evolution. Annu Rev Cell Dev Biol 18:53–80

    Article  CAS  PubMed  Google Scholar 

  • Unwin DM (1998) Feathers, filaments and theropod dinosaurs. Nature 391:119–120

    Article  CAS  Google Scholar 

  • Van Hemert C, Handel CM, Blake JE, Swor RM, O’Hara TM (2012) Microanatomy of passerine hard-cornified tissues: beak and claw structure of the Black-capped Chickadee (Poecile atricapillus). J Morphol 273:226–240

    Article  PubMed  Google Scholar 

  • Van Huynh A, Rice AM (2019) Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecol Evol 9:9671–9683

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Tyne J (1929) The life history of the toucan Ramphastos brevicarinatus. University of Michigan, Museum of Zoology, Miscellaneous Publications No. 19, Ann Arbor

    Google Scholar 

  • van Vuuren AKJ, Kemp LV, McKechnie AE (2020) The beak and unfeathered skin as heat radiators in the Southern Ground-Hornbill. J Avian Biol 51:jav.02457

    Article  Google Scholar 

  • Vas Z, Csörgö T, Møller AP, Rózsa L (2008) The feather holes on the Barn Swallow Hirundo rustica and other small passerines are probably caused by Brueelia spp. lice. J Parasitol 94:1438–1440

    Article  PubMed  Google Scholar 

  • Verea C, Vitelli-Flores J, Isturiz T, Rodríguez-Lemoine V, Bosque C (2017) The effect of uropygial gland secretions of Spectacled Thrushes (Turdus nudigenis) on feather degradation and bacterial growth in vitro. J Ornithol 158:1035–1043

    Article  Google Scholar 

  • Vigneron JP, Colomer J-F, Rassart M, Ingram AL, Lousse V (2006) Structural origin of the colored reflections from the Black-billed Magpie feathers. Phys Rev E 73:021914

    Article  Google Scholar 

  • Vogel S (2007) Living in a physical world. XI. To twist or bend when stressed. J Biosci 32:643–655

    Article  PubMed  Google Scholar 

  • Wadee MK, Wadee MA, Bassom AP (2007) Effects of orthotropy and variation of Poisson’s ratio on the behaviour of tubes in pure flexure. J Mech Phys Solids 55:1086–1102

    Article  CAS  Google Scholar 

  • Waite JL, Henry AR, Clayton DH (2012) How effective is preening against mobile ectoparasites? An experimental test with pigeons and hippoboscid flies. Int J Parasitol 42:463–467

    Article  Google Scholar 

  • Wang X, Clarke JA (2015) The evolution of avian wing shape and previously unrecognized trends in covert feathering. Proc R Soc B 282:20151935

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang B, Meyers MA (2017) Seagull feather shaft: correlation between structure and mechanical response. Acta Biomaterialia 48:270–288

    Article  PubMed  Google Scholar 

  • Wang B, Yang W, McKittrick J, Meyers MA (2016a) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318

    Article  CAS  Google Scholar 

  • Wang S, Yang Z, Gong G, Wang J, Wu J, Yang S, Jiang L (2016b) Icephobicity of penguins Sphenicus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures. J Phys Chem C 120:15923–15929

    Article  CAS  Google Scholar 

  • Weaver RJ, Santos ESA, Tucker AM, Wilson AE, Hill GE (2018) Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat Commun 9:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir KA, Lunam CA (2011) The structure and sensory innervation of the integument of ratites. In: Glatz P, Lunam C, Malecki I (eds) The welfare of farmed ratites. Springer, Berlin, Heidelberg, pp 131–145

    Chapter  Google Scholar 

  • West GC (1962) Responses and adaptations of wild birds to environmental temperature. Comp Physiol Temp Regul 3:291–324

    Google Scholar 

  • White CM, Clum NJ, Cade TJ, Hunt WG (2020) Peregrine Falcon (Falco peregrinus), version 1.0. In: Billerman SM (ed) Birds of the World. Cornell Lab of Ornithology, Ithaca

    Google Scholar 

  • Whittaker DJ, Hagelin JC (2021) Female-based patterns and social function in avian chemical communication. J Chem Ecol 47:43–62

    Article  CAS  PubMed  Google Scholar 

  • Whittaker DJ, Richmond KM, Miller AK, Kiley R, Bergeon Burns C, Atwell JW, Ketterson ED (2011) Intraspecific preen oil odor preferences in Dark-eyed Juncos (Junco hyemalis). Behav Ecol 22:1256–1263

    Article  Google Scholar 

  • Whittaker DJ, Rosvall KA, Slowinski SP, Soini HA, Novotny MV, Ketterson ED (2017) Songbird chemical signals reflect uropygial gland androgen sensitivity and predict aggression: implications for the role of the periphery in chemosignaling. J Comp Physiol A 204:5–15

    Article  Google Scholar 

  • Williams CL, Hagelin JC, Kooyman GL (2015) Hidden keys to survival: the type, density, pattern and functional role of Emperor Penguin body feathers. Proc R Soc B 282:20152033

    Article  PubMed  PubMed Central  Google Scholar 

  • Wingfield JC, Ishii S, Kikuchi M, Wakabayashi S, Sakai H, Yamaguchi N, Wada M, Chikatsuji K (2000) Biology of a critically endangered species, the Toki (Japanese Crested Ibis) Nipponia nippon. Ibis 142:1–11

    Article  Google Scholar 

  • Wood MJ, Brock G, Kietzig A-M (2023) The penguin feather as inspiration for anti-icing surfaces. Cold Regions Sci Tech. https://doi.org/10.1016/j.coldregions.2023.103903

  • Wu P, Ng CS, Yan J, Lai Y-C, Chen C-K, Lai Y-T, Wu S-M, Chen JJ, Luo W, Widelitz RB, Li WH (2015) Topographical map** of α-and β-keratins on develo** chicken skin integuments: functional interaction and evolutionary perspectives. Proc Natl Acad Sci USA 112:E6770–E6779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Yan J, Lai YC, Ng CS, Li A, Jiang X, Elsey R, Widelitz R, Bajpai R, Li WH, Chuong CM (2017) Multiple regulatory modules are required for scale-to-feather conversion. Mol Biol Evol 35:417–430

    Article  PubMed Central  Google Scholar 

  • **ao M, Dhinojwala A, Shawkey M (2014) Nanostructural basis of rainbow-like iridescence in Common Bronzewing Phaps chalcoptera feathers. Opt Express 22:14625–14636

    Article  PubMed  Google Scholar 

  • **ng L, McKellar RC, Li G, Bai M, Persons WS IV, Miyashita T, Benton MJ, Zhang J, Wolfe AP, Yi O, Tseng K, Ran H, Currie PJ (2016) A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr Biol 26:3352–3360

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329

    Google Scholar 

  • Xu X, Zhou Z, Prum RO (2001) Branched integumentary structures in Sinornithosaurus and the origin of feathers. Nature 410:200–204

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zheng X, You H (2009) A new feather type in a nonavian theropod and the early evolution of feathers. Proc Natl Acad Sci USA 106:832–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahavi A (1975) Mate selection – a selection for a handicap. J Theor Biol 53:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zampiga E, Hoi H, Pilastro A (2004) Preening, plumage reflectance and female choice in Budgerigars. Ethol Ecol Evol 16:339–349

    Article  Google Scholar 

  • Zelenitsky DK, Therrien F, Erickson GM, DeBuhr CL, Kobayashi Y, Eberth DA, Hadfield F (2012) Feathered non-avian dinosaurs from North America provide insight into wing origins. Science 338:510–514

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008a) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633

    Article  CAS  Google Scholar 

  • Zhang F, Zhou Z, Xu X, Wang X, Sullivan C (2008b) A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455:1105–1108

    Article  CAS  PubMed  Google Scholar 

  • Zhang YF, Dong BQ, Shi L, Yin HW, Liu XH, Zi J (2014) Color production in blue and green feather barbs of the Rosy-faced Lovebird. Mater Today: Proc 1:130–137

    CAS  Google Scholar 

  • Zheng X-T, You H-L, Xu X, Dong Z-M (2009) An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458:333–336

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Li Y, Liu G, Fan Q, Shao J (2016) Study on the correlations between the structural colors of photonic crystals and the base colors of textile fabric substrates. Dyes Pigm 133:435–444

    Article  CAS  Google Scholar 

  • Zuk M (1991) Sexual ornaments as animal signals. Trends Ecol Evol 6:228–231

    Article  CAS  PubMed  Google Scholar 

  • Zuk M, Johnsen TS (2000) Social environment and immunity in male Red Jungle Fowl. Behav Ecol 11:146–153

    Article  Google Scholar 

  • Zuk M, Johnsen TS, MacLarty T (1995) Endocrine-immune interactions, ornaments and mate choice in Red Jungle Fowl. Proc R Soc B 260:205–210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritchison, G. (2023). Integument. In: In a Class of Their Own. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-14852-1_3

Download citation

Publish with us

Policies and ethics

Navigation