A Classification Algorithm for Anomaly Detection in Terahertz Tomography

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2021)

Abstract

Terahertz tomography represents an emerging field in the area of nondestructive testing. Detecting outliers in measurements that are caused by defects is the main challenge in inline process monitoring. An efficient inline control enables to intervene directly during the manufacturing process and, consequently, to reduce product discard. We focus on plastics and ceramics and propose a density-based technique to automatically detect anomalies in the measured data of the radiation. The algorithm relies on a classification method based on machine learning. For a verification, supervised data are generated by a measuring system that approximates an inline process. The experimental results show that the use of terahertz radiation, combined with the classification algorithm, has great potential for a real inline manufacturing process.

Supported by the German Plastics Center (SKZ) and partially funded by German Federation of Industrial Research Associations (AiF) under 19948 N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 74.89
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 89.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 1–58 (2009)

    Article  Google Scholar 

  2. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)

    Google Scholar 

  3. Dhillon, S., et al.: The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 50(4), 043001 (2017)

    Google Scholar 

  4. Eden, K., Gebhard, H.: Dokumentation in der Mess-und Prüftechnik. Springer, Wiesbaden (2014). https://doi.org/10.1007/978-3-658-06114-2

    Book  Google Scholar 

  5. Ferguson, B., Zhang, X.C.: Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)

    Article  Google Scholar 

  6. Guillet, J.P., et al.: Review of terahertz tomography techniques. J. Infrared Millim. Terahertz Waves 35(4), 382–411 (2014)

    Article  Google Scholar 

  7. Krumbholz, N., et al.: Monitoring polymeric compounding processes inline with THz time-domain spectroscopy. Polym. Test. 28(1), 30–35 (2009)

    Article  Google Scholar 

  8. Limthong, K.: Real-time computer network anomaly detection using machine learning techniques. J. Adv. Comput. Netw. 1(1), 126–133 (2013)

    Google Scholar 

  9. Mehrotra, K., Mohan, C., Huang, H.: Anomaly Detection Principles and Algorithms. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67526-8

    Book  Google Scholar 

  10. Nüßler, D., Jonuscheit, J.: Terahertz based non-destructive testing (NDT): making the invisible visible. tm-Technisches Messen 1(ahead-of-print) (2020)

    Google Scholar 

  11. Tepe, J., Schuster, T., Littau, B.: A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography. Inverse Probl. Sci. Eng. 25(10), 1448–1473 (2017)

    Article  MathSciNet  Google Scholar 

  12. Tharwat, A.: Classification assessment methods. Appl. Comput. Inform. 17(6), 168–192 (2020)

    Google Scholar 

  13. Tzydynzhapov, G., Gusikhin, P., Muravev, V., Dremin, A., Nefyodov, Y., Kukushkin, I.: New real-time sub-terahertz security body scanner. J. Infrared Millim. Terahertz Waves 41, 1–10 (2020)

    Article  Google Scholar 

  14. Wald, A., Schuster, T.: Terahertz tomographic imaging using sequential subspace optimization. In: Hofmann, B., Leitao, A., Zubelli, J.P. (eds.) New Trends in Parameter Identification for Mathematical Models. Trends in Mathematics, Birkhäuser Basel (2018)

    Google Scholar 

  15. Zhong, S.: Progress in terahertz nondestructive testing: a review. Front. Mech. Eng. 14(3), 273–281 (2018). https://doi.org/10.1007/s11465-018-0495-9

    Article  Google Scholar 

  16. Zouaghi, W., Thomson, M., Rabia, K., Hahn, R., Blank, V., Roskos, H.: Broadband terahertz spectroscopy: principles, fundamental research and potential for industrial applications. Eur. J. Phys. 34(6), 179–199 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Meiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meiser, C., Schuster, T., Wald, A. (2022). A Classification Algorithm for Anomaly Detection in Terahertz Tomography. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2021. Lecture Notes in Computer Science, vol 13127. Springer, Cham. https://doi.org/10.1007/978-3-030-97549-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97549-4_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97548-7

  • Online ISBN: 978-3-030-97549-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation